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ABSTRACT 

Flower load is one of the earlier indicators of potential yield in fruit orchards. Usually, 

flower clusters are present on a tree in more than needed quantities for an optimal production. The 

most used techniques to manage the flower load are manual, mechanical, and chemical thinning. The 

main issue is to calibrate these techniques on the base of the desired yield. Drone imagery, being able 

to collect highly detailed information, could offer a solution to automate flower counting since 

manual flower counting would be too laborious. The main goals of this study were to develop an 

easy-to-use python program for sudden field interventions focused on both mapping site – specific 

and small area’s flower load. The program requirements were short computing time, high reliability, 

and full automatization of the process between data collection and information supply. Those were 

achieved by applying and comparing three methodologies that allow to map apple’s flower clusters 

load at blooming while adapting the quantification method to different training systems (2 – 

dimensional and 3 – dimensional). A comparison between the flower cluster estimation and the actual 

cluster load on hundred trees highlighted that mapping flower clusters by binary classification 

coupled with geoprocessing is more suitable than other similar methods, since it allowed to have a 

reduction in the processing time of 89 – 99%, an easier and less noise - affected image analysis with 

R2 values ranging from 0,76 to 0,85. Moreover, the study highlighted the correlation between site – 

specific variability and mean local variation (r = 0.77, R2 = 0.94) suggesting that to implement a VRT 

thinning at first the local mean variation can be mapped (requiring 44 s /ha) and secondly a site – 

specific flower load quantification can be performed according to the training system (3D: 25 min/ha; 

2D: 27 min/ha). The proposed methodologies seemed to be able to manage with a high spatial 

variability.  

 

Keywords— Precise management, thinning, flower load, fruit quality, yield, remote sensing.  
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1. INTRODUCTION 

1.1. IMPORTANCE OF MONITORING THE CLUSTER LOAD 

Over recent years, with the development of Precision Orchard Management (POM) techniques 

the monitoring of blossom cluster load per tree have been more and more important, since it is broadly 

recognised that crop load management is the single management strategy most influencing farm’s 

annual profits (Robinson et al., 2021). This implies that to improve the production, the farmer should 

be able to manage the orchard spatial variability before fruit set, in this way it would be possible to 

forecast the potential crop load and take proper decisions on how to perform as soon as possible a 

variable rate thinning (Liakos et al., 2017). Early interventions and knowledge about the spatial 

variability of blossom load are the basis to enhance fruit size, since at the beginning of the fruit 

growth, the among fruitlets competition for carbohydrates influences fruit’s cell division. 

Consequently, the earlier it is known in which parts of the orchard a higher than needed fruit load is 

expected to be realised, the earlier we could decide to give priority on thinning those areas to remove 

the on – going excessive competition which results in smaller fruits (Lakso et al., 1989). Furthermore, 

flower/crop load varies considerably over the orchard both in terms of initiation and intensity due to 

i) crop genetics ii) individual-tree crop load in the previous year (Link, 2000), iii) management 

differences (i.e. thinning, pruning, irrigation, plant protection strategies as protecting covers and 

bioregulators applications) (Yang and Xu, 2021) and iv) because of stressing environmental 

conditions (Naor et al., 2006) affecting either fresh tissues integrity (i.e. late frosts) or resources 

availability. Thus, in field, at a given time it could be find either a condition in which there is high 

spatial variation in blooming intensity ranging from trees with no flower clusters to trees with 

excessive load or a condition in which the flowering is homogeneous. According to this, different 

decisions must be taken on the thinning intensity, switching from a Variable Rate Treatment (VRT) 

thinning to a homogenous thinning (Manfrini, 2009). Another aspect to consider apart from flower 
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load is blooming’s scalarity, which may bring the plants to reach the target crop load at different 

times. For example, in 2020, in Voghiera (Ferrara, IT), a late frosts period came at the end of March 

while the apple cultivar ‘Fuji’ had already initialised blooming. That resulted in strong flowers 

necrosis with different impacts on the yield according to flower load, since the effect on high flowered 

trees was no more than a natural thinning which still allowed the farmer to get the target crop load 

out of them. Contrarily, on low flowered trees (i.e., those which initialised blooming later and those 

in the “year – off “) the apparent loss seemed to be the overall potential yield. Later in the season, at 

the end of April with the restoring of normal environmental conditions, a strong secondary blooming 

period occurred leading the farmer to get the target crop load even in those trees which apparently 

lost their whole production. Hence, letting just the trees suffering from biennial bearing disorder with 

no fruits. Obviously, since apple production is a match between fruit size and quality parameters as 

colour and sugar content, the revenue coming from late – blooms – originated fruits is lower than the 

one originated from early – blooms. This is as a consequence of lower fruit quality (Dalhaus et al., 

2020), but the gain in revenues still enriches the farmer allowing to reduce the impact of costs on his 

profit. Therefore, with cropping conditions strongly influenced by climate change, high price and 

production cost volatility, being able to scrape production from every tree as possible by monitoring 

blooming and performing a VRT thinning based on the cumulative flower quantity per tree and not 

according to a time snapshoot of the flower load, seems to be essential for the future of fruit growers’ 

activity. 

 

1.2. TECHNOLOGY TO MAP FLOWER DENSITY 

Even if the importance of flower load monitoring is widely recognised and the research trend on 

it is growing year after year to bring the farm sustainability (Figure 1), the availability for methods 
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which have potential field application meeting the automation of mapping flower load with ease of 

use, high reliability, short processing time and cheapness is still limited. 

Prior to year 2022, different methods for the estimation of clusters density in fruit orchards were 

developed starting from georeferenced manual sampling and spatial data interpolation (Manfrini et 

al., 2009; Teodorescu et al., 2016), following more recently with Machine Learning (ML) algorithms 

applied both to images shot by rover – embedded cameras (Wang et al., 2020) (Scalisi et al., 2021) 

and Unmanned Aerial Vehicle’s ones (Vanbrabant et al., 2020). 

Another proposed technique to estimate the cluster load at field level is based on the multi – level 

binary segmentation of an RGB orthomosaic (Piani et al., 2021) characterised by trees’ top – side 

view and high spatial resolution (1.02 cm/pixel). In the last cited paper, the Authors concluded stating 

that the binary segmentation of RGB drone imagery seems to be a valid approach for fostering field 

application. To put it more simply, it does not require the technology training phase as ML does, it 

allows with short processing time (8 mins), moderate correlation between manually sampled and 

estimated cluster load (R2 = 0.71) and potential low cost technology (drone with RGB camera and 

Figure 1. Scopus Literature research 
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open source GIS software) if compared with effective commercial prototype platforms as 

“cartographer” (Scalisi et al., 2021). On the other side of the coin, it also has drawbacks as: 

• the need for expensive licenced photogrammetry software to stitch the photograms in order 

to get the orthomosaic that should be analysed. 

• the long processing time required (6 hours) by a commonly owned Personal Computer (PC, 

i3-7020U CPU, 2.30GHz, 4.00 GB RAM) to produce the aerial mosaic. 

• considering orchards’ heterogeneous lighting conditions, the mosaic multi – photogram 

composition requires dynamic colour thresholding for image segmentation and proper small 

objects detection. 

• the noise given by soil on image segmentation, then flower detection. 

• the need for complete automation of the data analysis and manipulation phases. 

When developing a potential new commercial technology, the automation of processes should 

aim to promote farmers adoption and avoid them to spend time in training themselves on the use of 

the required software for data analysis and manipulation, since they are most likely to not be familiar 

with them considering that the European agricultural sector is suffering by ageing of farmers 

(European Union, 2021) and needs generational renewal. The automation should then provide the 

main drivers of technology adoption as Ease of Use and Usefulness/Perceived Usefulness (Pierpaoli 

et al., 2013) in managing a relevant agronomic procedure like flower counting. Thus, supplying a 

smooth transition to POM techniques, making farmers more inclined to adopt technology besides 

their own experience along their decision-making process. 

 

1.3. DRONES IN AGRICULTURE 

Unmanned aerial Vehicles (UAVs), also known as drones, are aircrafts without any on-board 

human passenger and are controlled remotely by the pilot who can either modify manually the camera 
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and flight setting or defining a flight path which the drone could travel by itself. In agriculture drones 

are becoming more and more popular, since they can be used to inspect either large or difficultly 

accessible areas in an easier and quicker way in comparison to field scouting (Tripicchio et al., 2015). 

The UAV has embedded sensors and actuators which communicate with the Central Processing Unit 

(CPU) allowed with computing power. This characteristic is the reason why drones are uploaded with 

many algorithms which allow their use in agriculture for many tasks: landscape and crop monitoring, 

remote sampling, 3D reconstruction, precise delivery of pesticide and Biological Control Agents 

(BCA), object detection and monitoring (Basri et al., 2021; van der Merwe et al., 2020), fruit picking.  

According to the utility purpose, the sensors installed in a drone may vary, but in most cases the 

main navigation and payload sensors are: 

• positioning measurement system (i.e., Global Navigation Satellite System, GNSS), which 

allows the drone to know its position and move around the landscape following the flight plan. 

• Inertial Measurement Units (IMUs), which tells the drone and cameras orientation. 

• Cameras (RGB, RGB-D, Multispectral, Hyperspectral, Thermal), which are the “eyes” of the 

drone, allowing it to sense and to either detect or avoid objects. 

• Light Detection and Ranging (LIDAR) is exploited for environment and landscape 3D 

reconstruction. 

• Altimeter, (i.e., barometer, laser altimeter, ultrasonic sensor) which allows the drone to get its 

flight elevation for image post – processing analysis. 

 

1.3.1. IMAGERY SPECTRAL PROPERTIES 

Correspondingly to the type of camera embedded in the drone, the spectral imaging varies into RGB, 

multispectral, hyperspectral, and thermal. More generally, in terms of spectral resolution, optical 

cameras are classified from the most to the least sensible as follows:  
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a) hyperspectral, they sense in 100 – 200 contiguous spectral bands of 5 – 10 nm bandwidth, 

then they are the most sensible and expensive, and from their application, it is possible to 

classify objects very precisely based on image thresholding methods. 

b) Multispectral, they sense in 5 – 10 bands with 70 – 400nm bandwidth. Usually, the most 

common spectral wavebands are Red (R), Green (G), Blue (B), Red-Edge (Redge) and Near 

Infrared (NIR). With this type of camera it is either possible to classify the landcover 

according to the use of Vegetation Indices (VIs) or to assess if a crop is in optimal or 

suboptimal health status (Daponte et al., 2019; Gautam and Sarkar, 2020). 

c) RGB, they sense just three bands in the visible spectrum (R, G, B), then their spectral 

resolution is quite low, but considering those bands are the ones in which human eyes can see, 

RGB cameras become useful for Computer Vision based on human – eye colour perception. 

Furthermore, RGB cameras, which are the cheapest ones, may be added with Infrared emitters 

and cameras (RGB-D) to match distance and spectral information which enhanced robots and 

aircrafts autonomous navigation (Zhang et al., 2019) as well the achievement of true colour 

Digital Terrain Model (DTM) and Digital Surface Model (DSM). 

d) Thermal cameras, which sense the energy emitted by bodies in the thermal region of the 

spectrum, are used to map surface temperature, crop water status and either humans or animals 

tracking. 

Therefore, digital images, also referred to as raster, are 2D arrays which dimensions depend on 

the size of the camera sensor. Then as a matrix, an image is composed by a finite number of cells, 

called “pixels”, which host the spectral information collected by the optical sensor. It should be 

specified that digital images are composed by multiple channels (or “layers” if referred to in a 

Geographic Information Systems context) according to the number of bands the camera may sense. 

As an example, a RGB camera of 21Mpx may produce digital images with three layers of 5120 

columns by 4096 rows (image size: 5120 x 4096 x 3), thus 21 million pixels each (Figure 2). The 
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number of pixels defines both the resolution of the image and the spatial resolution when converting 

the image into a spatial raster. That is not all, since the resolution of a raster from proximal or remote 

sensing is a match between optical sensor’s size and flight elevation, the effective raster spatial 

resolution or “Ground Sampling Distance” (GSD) is dynamically determined only by the elevation 

or Above Ground Level (AGL), since as it can be expected the sensor’s size does not change. To 

calculate the GSD of a survey or in other words, to know to how many ground metres a pixel 

corresponds, it is possible to apply the following formula: 

𝐺𝑆𝐷 (𝑚)  =  
𝐻 ×  𝑑

𝑝
   

Where H is the distance between the ground and the camera, d is a pixel’s side dimension of the 

optical sensor and p is the focal length (Corradeghini, 2018).  

 

1.3.2. IMAGERY METADATA 

According to the camera type, the drone may produce images in JPEG (RGB) or TIFF format 

(multispectral, hyperspectral, thermal). Whatever the file format, images are integrated with the data 

(metadata) and information collected by the navigation and payload sensors both as Exchangeable 

Figure 2. RGB image multi-channels composition and spectral data distribution 
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Image File (Exif) and Extensible Metadata Platform (XMP). The latter format is the standard for TIFF 

and GeoTiff files and it is based on Extensible Markup Language (XML). Generally, Exif stores GPS 

location, time, and camera settings at the time the image was shot, while XMP stores drone and 

camera’s physical location and direction. Metadata (Figure 3) are important since they store the 

information needed by photogrammetry programs to process and stich the images together into the 

orthomosaic. 

 

 

 

Figure 3. JPEG format metadata 

 

1.4. GEOREFERENCING DRONE IMAGERY 

Before an aerial image can be used to support VRT, it is essential to georeferenced its matrix, 

which means associating to each pixel geographic coordinates (longitude, latitude, altitude) and 

projection coordinates (x, y) with the proper coordinate reference system (crs).  
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This process can be performed in several ways, starting from the most adopted strategy based on 

manual georeferencing relying on Ground Control Points (GCPs), or more recently, following the 

disruption driven by aerial survey, with either strategies based on direct georeferencing without GCPs 

(but using navigation and camera metadata) or georeferencing following photogram mosaicking 

based on feature comparison and stitching as showed in Figure 4 (Zhao et al., 2019). The major 

problem with direct georeferencing is the error in the estimation of flight elevation (Štroner et al., 

2021), since this factor influences the magnitude of the spatial resolution. In Precision Agriculture 

(PA) high temporal and spatial resolution images are very useful – simply think about flower or pest 

detection which requires to distinguish objects smaller than 2 cm2 from the background (Ren et al., 

2018) – but mosaicking images taken at low altitudes on large areas is too time consuming (Moran, 

1997) as well the collection of GCPs (Xiang and Tian, 2011). Then images geometric corrections are 

needed to perform the direct georeferencing and reduce the image distortions (Figure 5). A promising 

technique for keeping high accuracy is based on multiple georeferenced UAV’s images mosaiced 

Figure 4. Flowchart of standard scale-invariant feature transform (SSIFT)-based 

image mosaicking (Zhao et al., 2019) 
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together, which outcome is a quickening in the georeferencing and data processing phase. Clearly it 

represents an advantage in terms of user acceptability (Xiang and Tian, 2011) to support site-specific 

management. 

 

Figure 5. Lens distortion models. (Xiang and Tian, 2011) 

 

1.5. GEOPROCESSING 

The term “geoprocessing” refers to a framework and set of tools for processing geographic and 

related data for spatial and temporal analysis as well variability assessment. Those aforementioned 

tools could be very useful to automate GIS tasks and quicken geodata analysis. Following, typical 

tasks of GIS tools are listed: 

• operations on datasets, 

• change of crs, 

• rasterization, 

• vectorisation, 

• georeferencing, 

• overlay (intersection, union, exclusion, clipping) 

• buffer analysis, 

• spatial interpolation with deterministic or geostatistics methods 
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GIS software like QGIS and GRASS are based on programming languages which like Python and 

Java relate on libraries supplied by OSGeo (‘Open-Source Geospatial Foundation’) as GDAL/OGR 

for raster and vector layers manipulation, and Orfeo ToolBox (OTB) which introduces machine 

learning application to remote sensed data. Those modules can be used as open-source tools to be 

implemented into python programs to perform inputs data preparation, analysis, documentation, and 

presentation, thus automating the data analysis and transformation flow which separates inputs from 

desired outputs. GDAL/OGR library supports many file drivers as JPEG, PNG, TIFF, GTiff 

(GeoTiff) for raster data as well ESRI Shapefile and GeoJSON file formats for vector data. 

In the GIS workflow, spatial data can be either vector layers or raster layers, and according to their 

nature they fit for different purposes: 

• vector layers: they are discrete data; thus, they are represented by points, lines and polygons 

storing data and geographical/cartographic coordinates according to their location. For 

example, trees’ locations in orchards may be represented by using points vector layers, while 

tree rows by lines vector layers and orchard boundaries by polygons. 

• Raster layers: they are continuous data, meaning that they consist of a grid of pixels containing 

specific information as surface reflectance, yield, canopy health, air temperature and so on. It 

is even possible to get continuous data by interpolation of discrete data in order to get trends 

on the feature in analysis. 

Python as a worldwide spread programming language has the availability for some others 

modules as GeoPandas (https://geopandas.org/en/stable/) which allow programmers to work on and 

map vector geodata in an easier way in comparison to OSGeo, and does it by combining other 

modules as Pandas (https://pandas.pydata.org/) and Shapely 

(https://shapely.readthedocs.io/en/stable/). The core data structure of GeoPandas is the 

GeoDataFrame (Figure 6) which consists in a database of indexed features whit their respective 

geometry (point, line, polygon). Here following there is an example of basic processing with  

https://geopandas.org/en/stable/
https://pandas.pydata.org/
https://shapely.readthedocs.io/en/stable/
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GeoPandas in Figure 7. 

 

Figure 6. GeoPandas' GeoDataFrame structure 

 

Figure 7. GeoPandas basic workflow 
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1.6. SEMIVARIOGRAM  

As already mentioned, field conditions are heterogeneous, and the core of  PA is to figure out the 

magnitude of spatial and temporal variability in order to manage them through agronomical decisions 

characterised either by uniform or variable applications (Florin et al., 2010). To reach this goal, it is 

essential to collect georeferenced data or to use technology as yield monitors, proximal sensors and 

remote sensing drones or satellites to automatically sample the field (van der Merwe et al., 2020). 

Once the data are collected and discrete values are associated with geographical coordinates 

(longitude, latitude) through the georeferencing process, it is possible to analyse the spatial 

correlation of variables through the semivariogram (or variogram) geostatistical tool. The 

semivariogram computes the probable degree of dissimilarity among two points separated by a given 

distance (h - lag) by analysing the semivariance (Eq. 1) between all points separated by the defined 

lag. 

𝛾(ℎ)  =  
1

2
 ∑

(𝑧(𝑥𝑖 + ℎ) − 𝑧(𝑥𝑖))
2

𝑛(ℎ)
                                       

𝑛(ℎ)
𝑖 = 1  (Equation 1) 

 

 To get the semivariogram model (Matheron, 1963), the first step is to convert all the 

geographical coordinates from degrees (GPS in WGS84 Datum) to their respective projections in 

metres (x, y). In this way, it is possible to calculate Euclidean distances (lag) among all pairs of points 

and apply to their values the equation 1. 

 Once obtained the experimental semivariogram, which basically is a plot showing how 

the semivariance of our dataset changes while increasing the separating distance between two points, 

we can get the best fitting curve called “theoretical semivariogram” (Figure 8). The latter gives us 

useful information and parameters as (Taylor et al., 2007): 

• Nugget (c0), which gives an estimation of the semivariance at a shorter distance than the 

smallest sampling distance (lag 0).  
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• Sill (c0  +  c1), which estimates the overall amount of variance in the data. 

• Range (a) that estimates the distance or lag at which the spatial autocorrelation vanishes. 

 

Starting from those parameters, it is possible to calculate the “Cambardella Index” (CI), which values 

show strong spatial correlation if lower than 25, moderate autocorrelation if in between 25 and 75, 

weak autocorrelation if higher than 75: 

𝐶𝐼 =  
𝑐0

𝑐0 + 𝑐1
× 100                                        (Equation 2) 

 

 

 

Figure 8. spherical semivariogram of the estimated flower cluster load in a Fuji orchard 
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1.7. THESIS OBJECTIVES 

The main aim of this dissertation is to address all the listed “drawbacks” at paragraph 1.2 on 

processing drone imagery to get flowering maps starting from RGB image segmentation. the goal is 

to collect all the solutions into an easy-to-use Python program, which potentially if translated into a 

Graphical User Interface (GUI) could support apple growers to reach the farm sustainability. 

Under this circumstance some requirements are needed: 

• reducing image processing time, 

• avoidance of expensive technology, 

• high reliability, 

• full automation of the processes, 

• adaptability to multiple tree’s training systems, 

• avoidance of the need for powerful computers, 

• ease of use. 
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2. MATERIALS AND METHODS 

 

2.1. DATA COLLECTION  

The data were collected on the 10th of April 2021, on a 1.6 ha ‘Fuji’ (cv. Aztec) apple orchard 

located in the Po valley (44.7651278 N – 11.7587535 E) and characterised by 2004 as planting year, 

tree spacing of 3.3 m inter – row and 1.0 m intra – row whit super spindle training system.  

The collected data refer both to georeferenced flower cluster load of hundred-one apple trees that 

were manually sampled within the study area, and to the top-side view aerial images of the orchard 

got by a Parrot ANAFI Thermal’s (Parrot Drones SAS - www.parrot.com) RGB camera. The day of 

the data collection the apple trees were at “full bloom” phenological stage (Figure 9), presenting a bit 

of scalarity with flower clusters at “red buds” stage (BBCH 60 - 65). The overall cluster load per tree 

was calculated as the sum of all the clusters in between BBCH 60-65 on both the tree’s walls. The 

georeferencing of manually sampled data consisted in creating a database to associate to each cluster 

load the GPS coordinate (WGS84 datum) of its respective tree. 

To what concerns the aerial survey, it was performed by exploiting the 16MP RGB camera (frame: 

4608x3456 / 4:3/ HFOV 75.5°) of the Anafi thermal (“Product sheet,” n.d.) which has an optical unit 

characterised by aspheric lenses and rectilinear resolution 

to minimize and uniform distortions at image edges, 

while maximizing the performances at the centre of the 

image. The desired average flight elevation or ‘ground 

distance’ was set to 24m in order to get a spatial 

resolution (Ground Sampling Distance – GSD) of 1.02 

cm/pixel, but weather conditions obstructed this 

reaching. 

 

Figure 9. 10th of April 2021, cv. Fuji Aztec 

phenological stage (BBCH 60-65) 

http://www.parrot.com/
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2.2. DATA ANALYSIS AND PROCESSING 

Data analysis mainly consisted into image manipulations within a workflow that starts from 

metadata extraction and ends with flower detection by binary segmentation. Following that, 

geospatial analysis was performed to produce vector shapefiles, raster maps and semivariogram 

models able to describe the whole orchard flowering variability. 

 

2.2.1. METADATA EXTRACTION AND GPS CORRECTION 

The first step of image manipulation is metadata extraction for useful information which allow 

frame’s direct georeferencing. Thus, referring to: GPS location (longitude, latitude, altitude), drone 

and camera’s yaw, pitch and roll (Figure 10). 

Following the metadata extraction, the drone’s Exif GPS location was corrected by altitude 

(AGL), camera yaw (ψ), pitch and roll (Figure 11) in order to calculate at ground level, the Euclidean 

distance in meters (|d|m) between the drone ground-projection and the real GPS location of the centre 

of the image. 

 

Figure 10. Photograms’ metadata analysis: a) flight path from GPS coordinates, b) Drone yaw, c) camera yaw, d) drone pitch, e) 

camera yaw, f) drone roll, g) camera roll, h) flight elevation and i) yaw difference for image georeferencing correction. 
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Figure 11. correction of image centre GPS coordinate 

After it, the metadata extracted longitude and latitude with the calculated offset were introduced 

inside the ‘Haversine formula’ (Equation 3) to get the new latitude and longitude (Equation 4, 5) 

referred to the image centre. 

ℎ𝑎𝑣(𝜃) =  𝑠𝑖𝑛2 (
𝜃

2
)  =  ℎ𝑎𝑣(𝜑2  −  𝜑1)  +  𝑐𝑜𝑠(𝜑1)𝑐𝑜𝑠(𝜑2)ℎ𝑎𝑣(𝜆2 − 𝜆1)    (Equation 3) 

𝜑2 =  sin−1 (sin (
𝜋 ∙ 𝜑1

180
) ∙ cos (

𝑑

𝑅
) + cos (

𝜋 ∙ 𝜑1

180
) ∙ sin (

𝑑

𝑅
) ∙  cos (

𝜋∙𝛽

180
)) ∙

180

𝜋
       (Equation 4) 

𝜆2  = ( (
𝜋∙𝜆1

180
) + tan−1 (

sin(
𝜋∙𝛽

180
)∙ sin(

𝑑

𝑅
)∙cos(

𝜋 ∙ 𝜑1
180

)

cos(
𝑑

𝑅
) − sin(

𝜋 ∙ 𝜑1
180

)∙sin(
𝜋 ∙ 𝜑2

180
)
)) ∙

180

𝜋
                     (Equation 5) 

where: 𝜑1, 𝜑2 are latitude of point 1 and point 2; 𝜆1, 𝜆2 are longitude of point 1 and point 2; 𝑅 is 

the Earth radius; 𝑑 is the distance in km between point 1 and 2; 𝛽 is the bearing angle between 

point 1 toward point 2 as showed in Figure 11. 
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2.2.2. IMAGE CLIPPING 

After applying the GPS correction, there is image clipping, designed for reducing computing time 

and adaptation to different tree’s training systems. It consists into removing from each frame the 

overlapped areas (Figure 12) in order to make them uniquely able to supply high resolution flowering 

information of a limited orchard area. Making it simpler, after the image clipping phase, there are not 

two frames covering the same area of interest (AOI). This is essential considering that reducing the 

number of pixels to be analysed in forward steps is a way to reduce computing time and also to 

increase the efficiency of the image analysis: each pixel gives an information that no other pixel in 

the dataset may give. To what concerns the adaptation to different training systems, the latter were 

distinguished into: 

•  2 – dimensional training systems (2D), as the newly introduced multi-leader, which require 

a tree’s side – view to properly quantify the cluster load, 

• 3 – dimensional training systems (3D), as the super – spindle, for which a top – view of the 

tree is enough for cluster load quantification. 

To make this distinction effective in the clipping process, the frame distortions were 

considered and clipping focused on image edges is performed to have a tree’s side – view, while 

clipping focused on the image central, less distorted zone for a tree’s top – side view (Figure 13). 

 

Figure 12. Aerial photograms overlapped areas: frontal and lateral. 
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Figure 13. Image clipping for different training systems and reduced processing time (image size is reduced by 92 - 93%) 

 

2.2.3. DIRECT GEOREFERENCING OF CLIPPED FRAMES 

The direct georeferencing process is split into two complementary subprocess: 

1. calculation of the clipped frame’s corners GPS locations as Ground Control Points (GCPs), 

2. clipped frame’s metadata and file format transformation from jpeg to GTiff. 

The first, consists into setting a within image coordinate reference system according to the chosen 

clipping strategy, which allows to calculate from the image centre geographic coordinate, based on 

the Haversine equation (Equation 3), the GPS location of the centre of the clipped frame, and then 
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from it the four corners’ (UL - upper left, UR – upper right, BR – bottom right, BL – bottom left) 

GPS coordinates as GCPs for the direct georeferencing. In those calculations the camera yaw is 

considered (Figure 14). 

 

Figure 14. Within image coordinates reference system for GCPs calculation 

 

The second subprocess (Figure 15) consists into assigning to image’s centre and corners pixels the 

GCPs. For doing that, image format changes and metadata manipulation are needed. Firstly, the 

clipped frame is converted from .jpeg to .tiff file, secondly the .tiff file is assigned with the proper 

geographical Coordinates Reference System (CRS), which in this case is the WGS84 Datum (EPSG: 

4326), then the GCPs are used to assign to the pixels of the four corners and the image centre the 

corresponding geographical location. Thirdly, the tiff raster with GCPs is warped in order to 

georeference the whole raster and make its file format effective as GeoTiff. The last step is 

geotransform function exploitation to rotate the raster according to the difference between the camera 

yaw and orchard tree rows’ bearing, which allows to further warp the raster and get more precise 

georeferencing. 
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2.2.4. GEOPROCESSING AT TREE LEVEL 

To reach the tree level some geoprocessing was implemented in order to manipulate spatial data and 

exploit data fusion. Since modern technology as RTK GPS allows to plant trees precisely in space 

and produces as an output either a shapefile or comma separated value (.csv) file containing all the 

GPS locations of each tree in the orchard, the developed tool, allows the grower to use it as a database. 

It means that the proposed tool, for flower mapping, either exploits that database or generates it by 

itself starting from five given input points. Once the database containing trees’ locations is available, 

within the geopandas framework, it is clipped according to the survey area. In this way more 

 

 

Figure 15. a) metadata transformation; b) image transformation and warp 
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processing time saving is reached and results are supplied to the user in advance, since the python 

program stops to quantify the flower load earlier, because of the avoidance of processing thousands 

of trees that fall outside the survey area. The latter is obtained by converting the GCPs of each clipped 

frame obtained over the georeferencing process, into a polygon shapefile and then all the polygons 

are merged into a single shapefile. Once the trees within the survey area have been identified (Figure 

16-c), the further step is detecting for each frame which are the trees located in it. To reach this, the 

before mentioned frames’ polygon shapefiles are exploited once again meaning that for each polygon, 

the list of trees within the survey area is clipped to identify the trees falling in the AOI (Figure 16-d). 

Once the trees have been detected, for each of them, according to tree rows bearing angle and planting 

distance, four GCPs are calculated and additional shapefiles representing the tree area are generated 

(Figure 16-e). The latter are then used to clip the georeferenced photogram (i.e., AOI) ang get a tree 

– specific image for the following flower detection phase (Figure 16-f). 

 

Figure 16. a) survey area; b) database of trees' locations with overlapped survey area; c) clipped database; d) trees in the 

photogram area; e) trees' bounding boxes with tree spacing dimensions; f) GeoTiff photogram clipped with the bounding box at 

tree level 
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2.2.5. FLOWER DETECTION 

The detection of flower clusters is performed via image binary classification, in other words each 

pixel of the image is categorised by a defined query into “pixel containing flowers” and “pixel without 

flowers”. To reduce at most the noise of the pixels not containing flowers, as those related to soil 

noise (Piani et al., 2021), the images are segmented into the HSV colour space (hue, saturation and 

brightness) instead of the RGB one. Additionally, the thresholds’ values change dynamically 

according to the dimensions of the AOI, then if the image is tree – specific (Single Photogram 

Processing algorithm – SPP), the area is small and more homogeneous in terms of environmental and 

lightening conditions. As a consequence of it, the colour thresholding is calibrated to detect clusters 

at small scale when most of the noise is removed during the backward processes of image clipping 

and geoprocessing at tree level. Differently, if the AOI to process is larger, thus the whole clipped 

photogram (Photogram Clipping algorithm – PC), the environmental and lightening conditions are 

less uniform, and the colour thresholding is calibrated to handle with the noise and maximise flowers 

detection. As a direct result of the AOI’s homogeneity, the flower clusters estimation is more effective 

at small scale rather than at larger one. 

 

Table 1. thresholds values for flower detection 

Thresholds 3D SPP  2D SPP  PC 

If: V max >= 242 < 242 >= 242 < 242 >= 230 >= 220 < 220 

H min 11 20 11 20 30 30 30 

H max 179 179 179 179 179 179 179 

S min 0 30 0 30 30 30 30 

S max 255 255 255 255 255 255 255 

V min 211 211 211 211 184 170 125 

V max 255 255 255 255 255 255 255 

 

Referring to the thresholds’ purposes (Figure 17): 

• Hue minimum (H min) removes most of the soil noise,  
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• Saturation minimum (S min) removes poles and hail – nets noises, 

• Value minimum (V min) removes vegetation and soil noises.  

Following the images’ binary classification according to the thresholds in Table 1, the flower clusters 

load in the AOI is estimated through the sum of all white pixels detected in it (i.e., “1 – value” pixels 

after query execution). That because after getting the sum of all the flower related pixels, it is 

converted to flower load by a calibration function specific for the adopted clipping process (2D at 

tree level, 3D at tree level, whole clipped photogram). The cited calibration functions are obtained by 

a regression of the independent variable “flower pixels” with the dependent variable “sampled flower 

clusters” both referred to the hundred – one sampled tree.  

 

Photogram Clipping (PC) algorithm – HSV thresholds effects 

  

 

Single Photogram Processing (SPP) algorithm – HSV thresholds effects 

  

 
Figure 17. HSV thresholds’ effects on flower detection 
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2.3. PROGRAM DEVELOPMENT 

With the purpose of bringing full automation and ease of use to fruit growers, all the different 

steps described from paragraph 2.2.1 to 2.2.5 have been programmed in Python 3.10.1 [MSC v.1929 

64 bit (AMD64)] and designed to reach both site-specific cluster load quantification and average 

area-specific cluster load quantification (PC) according to the degree of variability that the grower’s 

machinery and employees are able to handle during mechanical, chemical or manual thinning. It 

follows that, the program which allows to reach site – specific 3D training systems cluster load 

quantification is called “Single Photogram Processing 3D” (3D SPP), while the one for site – specific 

2D training systems quantification is “2D SPP”. On the other hand, the program to get the average 

cluster load in the whole area of interest is called “Photogram Clipping” (PC). According to the degree 

of variability to handle, the algorithms have been programmed to give multiple information starting 

from the collection of simple user inputs (Figure 18) as: 

• directory to the folder where the drone imagery is stored, 

• survey resolution (GSD), 

• frame overlaps percentages (frontal and lateral) 

• tree spacing, 

• database file containing trees’ GPS coordinates or five field’s reference points. 

The main difference among the SPP algorithms and the PC one is that the latter following the image 

clipping directly proceeds with flower detection on the AOI, while SPP algorithms continue with 

geoprocessing up to tree level and site – specific flower detection.  Another difference is that the SPP 

algorithms as outputs besides the maps showing the flowering spatial variability (Figure 19), give 

some semivariogram models (Spherical, Exponential and Gaussian) that the grower can use to 

manage spatial data within GIS software as QGIS and to perform manual sampling in the orchard 

during the production processes that follow blooming. 
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3D SPP 2D SPP 

  

PC 

      
Figure 19. Programs’ output map 

3D SPP and 2D SPP programs inputs PC program inputs 

 

 

Figure 18. Programs’ required user inputs 
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2.3.1. ALGORITHMS CALIBRATION 

Considering that the PC algorithm is unable to deep in space up to the tree level, to supply the user 

with an easily understandable information about cluster load quantifications or in other words the 

average amount of flower cluster per tree, a calibration process is needed.  

  

This was performed by comparing (Figure 20) and doing a regression at photogram level, since the 

spatial resolution of the two algorithms is different, of the 3D SPP flower pixels values with the PC 

ones. After that the PC’s load per photogram of flower – related pixels is converted with the 

regression model into cumulative 3D SPP pixels and following the conversion to 3D SPP cumulative 

cluster load per AOI. Then at last the average cluster load per tree is obtained by Equation 6. 

 

𝐴𝑣𝑔. 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑙𝑜𝑎𝑑 𝑝𝑒𝑟 𝑡𝑟𝑒𝑒 =  𝑆𝑃𝑃 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑙𝑜𝑎𝑑 ∙  
𝑡𝑟𝑒𝑒′𝑠 𝑎𝑟𝑒𝑎 

𝐴𝑂𝐼 𝑎𝑟𝑒𝑎
     (Equation 6) 

 

2.4. STATISTICAL ANALYSIS 

The reliability of the algorithms in detecting flowering variability was evaluated at first by statistical 

analysis in Rstudio environment, thus in brief was analysed the variables correlation (r), the variables 

regression to find out through analysis of variance (ANOVA) and RMSE which is the best model to 

 

Figure 20. Cumulative SPP3D cluster load per photogram and PC one 
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convert the pixel load into cluster load per tree. Secondly a mapping analysis in QGIS environment 

was exploited to understand the models’ spatial resolution and how they can be used to map the in – 

field flowering variability. 

To exploit the correlation among the mentioned variables, and to get a regression model for 3D SPP 

and 2D SPP algorithms, it was used as independent variable (x) the flowers – related pixel load per 

tree and as dependent variable (y) the hundred sampled trees’ cluster loads. The different tested 

regression models (linear, quadratic, cubic) were forced with intercept at axis origin in order to have 

as an output “no cluster load” for those trees showing no flower – related pixels. Otherwise, 

considering that the correlation coefficients are not equal to +1, the conversion to cluster load may 

give a completely wrong estimation given by the intercept different from zero. The effectiveness of 

the models in estimating the cluster load per tree was tested through the coefficient of determination 

(R2), the root mean square error (RMSE) and the Analysis of variance (ANOVA). 
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3. RESULTS AND DISCUSSIONS 

3.1. RELIABILITY 

3.1.1. CORRELATION COEFFICIENT (r) 

The correlation coefficient (r) of two variables is analysed to understand if somehow the variables 

are: 

• positively correlated each other (r > 0),  

• negatively correlated each other (r < 0), 

• not correlated (r = 0). 

For the analysis was exploited the maximum number of sampled trees located inside the 

georeferenced AOIs of both algorithms, then 97 observations for the 3D SPP algorithm and 50 for 

2D SPP algorithm were considered. 

The analysis pointed out that both 3D SPP and 2D SPP pixel loads are positively correlated with the 

sampled cluster loads with correlation coefficients respectively of 0.32 and 0.49. This suggests that a 

side – view of the tree allows to better quantify the flower cluster rather than a top – side view, but 

both of the views are effective. This correlation can be exploited in terms of conditional probability 

of dependent events (equation 7), since the within – tree flower presence can be determined in absence 

of phenomenon altering the flowers development by observing a part of the three. To make it simpler, 

when determining the amount of flower clusters per tree by manual sampling, it is usually quantified 

by counting the amount of inflorescence on a tree side and then multiplying it by a coefficient to get 

the whole tree flower clusters amount. That because it is feasible that after observing the presence of 

flowers on a side of the tree, the probability of having flowers on the other side of the tree depends 

on the observation. At the same way, observing flowers on the top of tree allows to understand that 

somehow even the bottom part of the tree has flowers randomly distributed. 
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𝑃(𝐴|𝐵)  =  
 𝑃(𝐴∩𝐵)

𝑃(𝐵)
 =  

𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑒𝑣𝑒𝑛𝑡𝑠

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑣𝑒𝑛𝑡𝑠
 ∙  

1

𝑃(𝐵)
                                  (Equation 7) 

 

where: P(B) is the probability of counting some flowers on the side or top of the tree, P(A) is the 

probability of having flowers on the other side or bottom of the tree and P(A|B) is the probability of 

having the expression of event A knowing the realization of event B.  

To make an example, the probability of either having or not flowers on a tree is 50%, P(B), so, if the 

counting flowers on a tree side is figuring out the presence of flowers, the possibility of having 

flowers on the other tree side is 1 out of 2 (50%), 𝑃(𝐴 ∩ 𝐵). Thus, if flowers on a side have/have not 

been counted, the probability of counting/not counting them on the other side is 100%, 𝑃(𝐴|𝐵).  

 

3.1.2. STATISTICAL ANALYSIS 

For what concerns the coefficient of determination, it came out that increasing the degree of 

complexity of the model, then switching from a linear model to a cubic one, for both algorithms the 

phenomenon explanation increases from R2 equal to 0.81 to 0.85 for 3D SPP and from 0.76 to 0.81 

for 2D SPP. To summarise, all the models gave a degree of explanation higher than the ones proposed 

in the scientific literature which adopted image segmentation as quantification method (Piani et al., 

2021, R2  0.71). The ANOVA analysis of the models highlights that the increase in the phenomenon 

explanation while adding complexity is described by the significance given by the added coefficients 

modelling the variance of the dependent variable on the change in the measured independent variable 

as showed in Table 2. 

Finally, the analysis of the RMSE pointed out that event if adding complexity to the models results 

in an increase in the explanation of the phenomenon, the errors in giving the right estimation get 

bigger as well (Figure 21). In that case, the use of linear regression models is assumed to be the one 

that supplies the most precise flower load estimation for field applications. 
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Table 2. ANOVA analysis of the proposed models. Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 3D SPP 
x: flower pixels 

y: sampled clusters 

2D SPP 
x: flower pixels 

y: sampled clusters 

Lin. 

Analysis of Variance Table 

Response: y 

 Df Sum Sq Mean Sq F value Pr (>F) 

x 1 671657 671657 403.2 < 2.2e-16 

*** 

Resid. 96 159918 1666   
 

Analysis of Variance Table 

Response: y 

 Df Sum Sq Mean Sq F value Pr (>F) 

x 1 368067  368067   162.44 < 2.2e-16 

 *** 

Resid. 49 111027 2266                         

 

Quad. 

Analysis of Variance Table 

Response: y 

 Df Sum Sq Mean Sq F value Pr (>F) 

x 1 671657 671657 462.496 < 2.2e-16 

*** 

x^2 1 21955 21955 15.118 0.0001871 

*** 

Resid. 95 137963 1452   
 

Analysis of Variance Table 

Response: y 

 Df Sum Sq Mean Sq F value Pr (>F) 

x 1 368067  368067   186.35 < 2.2e-16 

*** 

x^2 1 16218    16218    8.2108 0.006163 

** 

Resid. 48 137963 1452   
 

Cubic 

Analysis of Variance Table 

Response: y 

 Df Sum Sq Mean Sq F value Pr (>F) 

x 1 671657 671657 519.596 < 2.2e-16 

*** 

x^2 1 21955 21955 16.984 0.0001871 

*** 

x^3 1 16454 16454 12.729 0.0005689 

*** 

Resid. 94 121509 1293   
 

Analysis of Variance Table 

Response: y 

 Df Sum Sq Mean Sq F value Pr (>F) 

x 1 368067  368067   201.948 < 2.2e-16 

*** 

x^2 1 16218    16218    8.8983 0.004515 

** 

x^3 1 16454 16454 5.0188 0.029840 

* 

Resid. 47 85662 1823   
 

 

 

 

Figure 21. regression models (linear, quadratic, cubic) for both SPP algorithms 

 

As mentioned in paragraph 2.3.1, the calibration function to convert the cumulative flower pixels 

detected by the PC algorithm into average cluster load per tree in the AOI, was evaluated in the same 

way as described for both the SPP algorithms, and similarly to them, the best fitting model to convert 
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PC’s flower pixels into 3D SPP ones is the linear model (R2 0.94, RMSE 1828.6, p < 2.2e-16) as 

showed in Figure 22. 

 

Figure 22. model to convert PC flower - related pixels to SPP flower pixels 

 

The scatterplot shows clearly as increasing the size of the AOI (from tree – specific to whole 

photogram), the noise in colour thresholding becomes more evident leading to an overestimation of 

the flower load of about 40%. However, it is possible to adopt the whole photogram analysis to get a 

flowering trend which is quite precise in explaining the mean local variation. 

To sum up, the dissertation confirmed that using cheap RGB technology is an effective way to 

map flower load over the orchard area. Additionally, this is effective since applying the SPP and PC 

algorithms at field level, it is possible to estimate loads instead of densities of flowers as other 

algorithms as the M5 one does (Piani et al., 2021), thus increasing the user potential perceived utility 

and data understanding.  

 

3.1.3. MAPPING ANALYSIS OF SPATIAL RESOLUTION 

To understand the spatial resolution of the programs, different strategies were adopted: the first 

one consisted into extracting from the databases supplied by both the SPP and PC algorithms the 

flower loads related to one of the tree rows that were manually sampled, and then by plotting for each 
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tree the estimated values with their respective sampled data, it was possible to notice for the SPP 

algorithms an in – row detection offset (Figure 23). The offset is originated by errors in the spatial 

orientation of the clipped photogram over the direct georeferencing process, and it is estimated to be 

in between one or two in – row tree positions (Figure 24). 

To sum up, to what concerns the SPP algorithms, the spatial resolution concern the tree position 

(i.e., in this case a meter), while the error in the GPS location of the cluster load is in between 1 – 2 

metres. Switching to the PC algorithm, from the same comparison, it is possible to notice that the 

averaging process removes the offset, and the spatial resolution is given by the photogram area, thus 

in this case 8.8m x 13.3m. 

 

Figure 23. in row variability detection 

  
Figure 24. differences in tree positioning given by the georeferencing method adopted 
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Once the errors embedded in the systems were detected, to evaluate their effect in producing 

prescription maps that could be used to organise the thinning procedures, the interpolation of all the 

discrete data into raster maps (Figure 25) was performed using a deterministic approach (Inverse 

Distance Weighting – IDW with 𝛼 =  2). From the visual analysis of the different raster maps it can 

be pointed out that to produce a prescription map, according to the degree of variability that the farmer 

can manage, both the SPP algorithms can substitute manual sampling if the target is a tree – based 

VRT thinning, while if the target agronomical intervention is a local VRT thinning, the PC algorithm 

may be the best one. 

  

    
Figure 25. deterministic interpolations (IDW) over the sampled trees parcel 

 

3.2. PROCESSING TIME 

As reported by (Piani et al., 2021), in the process of mapping at field level the flower clusters 

density/load, the most time consuming phase is the creation of the orthomosaic. The proposed method 

for the direct georeferencing allows to get an orthomosaic – like raster of 1.6 ha orchard in 143 

seconds, while producing an orthomosaic takes 6 hours (Figure 26). 
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Figure 26. georeferencing methods comparisons 

Then, the time saving can be exploited to deepen flower detection up to tree – level. The 

geoprocessing process added with the flower detection requires 34 – 47 minutes for the 3D SPP 

algorithm and 40 – 47 minutes for the 2D SPP algorithm. Thus, in a comparison with the orthomosaic 

processing analysis (6h 25min) there is a net saving in processing time of about 89% for both SPPs 

algorithms.  

Referring to the PC algorithm, which does not require image georeferencing and geoprocessing at 

tree level for the flower detection, it allows to get a geodatabase hosting average flower cluster loads 

information in 60 – 70 seconds, thus a net saving in processing time of 99.7%. 

 

3.3. EASE OF USE AND PERCEIVED UTILITY 

All the programs are coded in order to get simple inputs from the user related to the UAV survey and 

field characteristics as planting distance, training 

system and either a database storing trees’ GPS 

locations or five reference points (Figure 27) from 

which to calculate trees position. Through data 

analysis, manipulation and transformation the 

value of the inputs data is increased, allowing the Figure 27. input reference points 
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user to get a final report containing a set of information related to orchard tree rows orientation (i.e., 

N-S, W-E, NW-SE, etc), orchard area, field GPS coordinates (longitude and latitude) and UTM 

zone/EPSG code that can be exploited for analysing data within GIS software. Additionally, within 

the report are contained also basics statistics about the flower load as the count of detected trees, 

average flower cluster load, quantiles, number, and percentage of trees without flowers that are useful 

for monitoring the biennial bearing disorder. The last section of the report contains the most common 

semivariogram models (exponential, gaussian, spherical) and their characteristics in term of range, 

sill, nugget, RMSE in order to allow the data analyst to choose the proper geostatistical model to 

interpolate data or even to manage manual sampling. 

At the end of the algorithms run, a folder (Figure 28) containing the report, the maps showing 

the spatial variability among the orchard, and shapefiles in UTM .crs are automatically created. This 

was designed to allow the user to have a first look of the field condition by looking at the map, then 

getting more information from the report and if more is needed, the shapefiles can be directly 

imported within GIS software to perform the required geoprocessing without the need for layer’s 

CRS conversion to UTM zone. The data about flower load are stored within a .csv database that can 

be used by the farmer to create a multiyear database or to store manually sampled data over the 

production period since it reports trees’ GPS location and related flower load. 

The data increased value has the purpose of enhancing the perceived utility of the farmer, since they 

give crucial information for the adoption of precision orchard management techniques. 

 

Figure 28. Python programs’ output files 
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3.4. ADAPTABILITY TO FIELD CONDITIONS 

The programs are developed to process top – view aerial images get by drone, thus the first limit 

for field application is the absence of closed hail nets. Otherwise, the presence of the net layer alters 

the colour thresholding for flower detection. Secondly, considering that most of the fruit growers 

have small size fields, and in most cases, those are heterogeneous in terms of training systems and 

cropped cultivars, allowing the farmer with a program which can handle different training systems 

(2D and 3D) to supply flowering information is a way to increase both the return of investment and 

the value of the collected images. That because, in case of multiple training systems, it is possible to 

perform just one flight to collect images, and then processing them with both the 3D and 2D 

algorithms. Later, inside a GIS software it is possible to clip and merge the output shapefiles given 

by the algorithms to describe the flower variability with the side – view for 2D training systems, and 

with top – view for 3D training systems.  

 

3.5. FIELD OF APPLICATION 

The developed programs are designed for field application characterised by high reliability and 

short processing time that should help the farmer in managing the thinning procedures and to optimize 

the crop load resulting in an increase in the overall orchard production. This is reached since the maps 

showing the spatial variability of the flower load may be used to produce prescription maps for 

thinning requiring machinery utilisation as mechanical and chemical thinning do (Figure 29). 

Prescription maps can be produced even to manage the manual thinning which becomes 

essential to optimize production especially in organic farms, that because of the fruitlet competition 

for carbohydrates and the time required to thin a hectare by hand (300h/ha circa). It is clear as in the 

required timeframe the competition may slow the fruit growth of several decigrams per day according 

to the crop load. For this reason, by knowing zonal or tree – specific flower load, it is possible to 
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organize the thinning and the employees to act at first in those orchard’s sectors where more fruitlets 

competition is expected to be realised and at last, to act in those areas having the less competition 

(Figure 30). This could result in homogenizing the fruit growth, hence fruit diameter and weight. 

 

  
 

Figure 29. a) map of flower density, b) prescription map for chemical thinning 

 

 

 
 

Figure 30. prescription map for manual thinning 
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