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Abstract 
The demand for biomass to support bio-based production chains will increase over the next years, 

and this demand makes biomass production compete with food production on agricultural land. To 

avoid this competition, biomass crops can be grown on marginal land. However, their yield and 

quality on marginal land is highly variable because they are not genetically enhanced for biomass-

related traits. Therefore, improving the biomass yield and quality of novel biomass crop genotypes 

through breeding programs is critical to the economic viability of growing them on marginal land. 

Examples of low-input biomass crops that can grow on marginal land and produce non-food biomass 

are miscanthus and hemp, two crops targeted in the EU project GRACE (GRowing Advanced 

industrial Crops on marginal lands for biorEfineries). The project aims to evaluate the sustainability 

of the increased biomass production of novel miscanthus and hemp genotypes on marginal lands, thus 

reducing the conflict with food production.  

This thesis was carried out within the project’s framework. Field trials were carried out to assess the 

performance of 14 miscanthus hybrids and 2 hemp cultivars through field measurements of relevant 

crops traits in different years and locations, in order to phenotype the novel genotypes. Unmanned 

aerial vehicles (UAVs) based multispectral remote sensing platform was used for high-throughput 

phenotyping (HTP) of hemp and miscanthus traits. UAV remote sensing acquires spectral reflectance 

signatures through multispectral sensors used to calculate vegetation indices (VIs) linked with crop 

traits. For hemp the crop traits estimated from UAV remote sensing were leaf area index (LAI) and 

leaf chlorophyll content (LCC); for miscanthus, light interception, plant height, green leaf biomass, 

standing biomass and moisture content. Three estimation methods were investigated: i) 

nonparametric regression methods, ii) physically based model inversion methods, and iii) hybrid 

regression methods. For hemp traits estimation, the PROSAIL model was used, and two inversion 

methods were compared: the look-up table (LUT) based on a cost function (physically based model 

inversion method) and the hybrid regression method based on machine learning (ML) algorithms. 

The hybrid regression methods performed better than LUT methods, both for LAI and LCC 

estimation, and the best accuracies were achieved by random forest (RF) for the LAI (0.76 m2 m-2 of 

RMSE) and gaussian process regression (GPR) for the LCC (10.39 µg cm-2 of RMSE). For 

miscanthus traits estimation, the random forest ML algorithm (nonparametric regression method) was 

used, and it estimated with good accuracy light interception (8.4 % of RMSE), plant height (42 cm 

of RMSE), and moisture content (5.6 % of RMSE). Yield prediction, obtained using peak derived 

from the time series of VIs and random forest (RF) model, was performed to improve logistics 

biomass supply chain of miscanthus. The RF model accurately predicted miscanthus yield with 2.3 

https://www.grace-bbi.eu/


 

 

Mg DM ha-1 of RMSE. The RF model operability was evaluated through a timeline of the 

performance of the model using peak derived from partial VIs time series, and it showed a good 

capability to predict the yield three to seven months before the harvest. The HTP of hemp and 

miscanthus was carried out by applying the generalized additive model (GAM) to the time series of 

traits values (LAI and LCC for hemp and moisture content for miscanthus), which were estimated by 

the best estimation models from multiple multispectral UAV flights. The GAM analysis showed 

differences in the LAI and LCC dynamics between two hemp cultivars and differences in the moisture 

content dynamics between the novel miscanthus hybrids. Furthermore, to overcome the issue of UAV 

multi-sensor interoperability, linking equations derived from the PROSAIL model were used to link 

VIs of two different UAV multispectral sensors.  

In conclusion, this linking procedure is interesting for crop phenotyping, where the field trials are 

often carried out in multi-location and with different UAV sensors. ML and inversion methods of the 

PROSAIL model estimated the crop traits with good accuracy, demonstrating that the UAV 

multispectral remote sensing platform is a suitable tool for HTP. UAV remote sensing enabled crop 

phenotypic traits to be distinguished and deepened our understanding of the traits' dynamics in 

contrasting genotypes throughout the growing season. Combining estimation models and GAM 

modelling applied to time series of crop trait values estimated from multiple multispectral images of 

UAV flights proved to be a powerful tool for HTP. 

 

Keywords: UAV, remote sensing, high-throughput phenotyping, hemp, miscanthus, trait estimation, 

yield prediction, PROSAIL, machine learning, GAM, multi-sensor interoperability.  
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Introduction 

 

Abstract 

This chapter firstly provides a brief introduction to biomass crops on marginal lands, to the unmanned 

aerial vehicle (UAV) remote sensing for crop phenotyping and to the statistical and physical methods 

for estimating crop traits. Thereafter it outlines the objectives and content of the thesis. 

 

 

Contents 

 

1.1 Biomass crops on marginal land: role of miscanthus and hemp within EU GRACE project 3 

1.2 High-throughput phenotyping by UAV remote sensing: sensors and applications 4 

1.3 Estimation of phenotypic crop traits: statistical and physical methods 6 

1.4 Objectives 8 

1.5 Thesis outline 11 

  



Chapter 1  

3 

 

1.1 Biomass crops on marginal land: role of miscanthus and hemp 

within EU GRACE project  

Projections for the demand for biomass, to sustain bio-based production chains, will considerably 

increase in the next 30 years and dedicated field crops will have a prominent position in supporting 

this demand (Piotrowski et al., 2015). This demand puts biomass production in competition with food 

production on agricultural land (Dauber et al., 2012; Gelfand et al., 2013). Dedicated crops for 

biomass production could therefore be grown on marginal lands to avoid competition with food 

production (Carlsson et al., 2017; Fritsche et al., 2010; Kang et al., 2013; Tilman et al., 2009). 

Marginal lands are areas not used for food production because of their low agronomic and economic 

potential (Schmidt et al., 2015; Shortall, 2013), and are defined as marginal because of factors such 

as poor soil quality, contamination by heavy metals, poor water availability, steep slopes or distance 

from transportation (Pancaldi & Trindade, 2020). Biomass crops generally require low inputs and 

show high resource use efficiencies, so they grow well on marginal lands (Mehmood et al., 2017). 

However, most biomass crops show very variable biomass yield and quality (Zegada-Lizarazu et al., 

2010) because they have not undergone genetic improvement for biomass-related traits (Jones et al., 

2015; Zhu et al., 2016). Improving biomass yield and quality in novel biomass crop species for 

marginal lands is crucial to enable the economic viability of the cultivation of biomass crops on 

marginal lands (Pancaldi & Trindade, 2020). Biomass yield is an important trait, and its improvement 

is determined by other traits positively correlated with biomass yield, such as light interception, plant 

height and leaf characteristics (Boe & Beck, 2008; Fernandez et al., 2009). Crop growth 

characteristics such as duration and timing affect biomass yield and can be maximized by breeding 

programs which aim to achieve crops with early leaf development, delayed plant senescence and late 

flowering time (Pancaldi & Trindade, 2020). As a result of climate change, the poor conditions of 

marginal lands will worsen because of abiotic stress intensification (Quinn et al., 2015). The 

development of novel genotypes that couple robustness with optimal yields is fundamental for 

cultivating biomass crops on marginal lands (Jones et al., 2015) and for the success of bio-based 

production chains. Novel miscanthus and hemp genotypes have recently been tested along with other 

biomass crops in two EU projects (OPTIMSC and MultiHemp) to evaluate their biomass production 

on marginal land (Lewandowski et al., 2016; Tang et al., 2017). Although both miscanthus and hemp 

are low-input crops (McCalmont et al., 2017; Struik et al., 2000) that can grow on marginal land and 

produce non-food biomass (Amaducci et al., 2015), the EU projects OPTIMSC and MultiHemp 

demonstrated the importance of using genotypes suited to the environment and the intended end-use 

(Lewandowski et al., 2016; Tang et al., 2016). Genetic variations of miscanthus and hemp enable the 

https://optimisc.uni-hohenheim.de/en/92383
http://multihemp.eu/
https://optimisc.uni-hohenheim.de/en/92383
http://multihemp.eu/
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germplasm to be adapted to the specific needs of different industrial applications. The on-going EU 

project GRACE (GRowing Advanced industrial Crops on marginal lands for biorEfineries) aims to 

reduce the conflict with food production by unlocking the use of marginal lands for biomass 

production and demonstrate the sustainability of the increased biomass production of miscanthus and 

hemp on marginal lands. The GRACE project evaluates novel seed-based miscanthus hybrids from 

breeding programs at the Universities of Aberystwyth and Wageningen. The productive suitability of 

these miscanthus hybrids is evaluated in field trials conducted over a wide geographical and 

environmental range. These trials assess the performance of the miscanthus hybrids, as well as hemp 

cultivars, via field measurements of relevant crop traits, with the aim of phenotyping the novel 

genotypes. The phenotyping activities of the miscanthus and hemp traits in turn increase the 

knowledge of these novel genotypes and this information can be used to improve the crop germplasm 

in future breeding programs. 

1.2 High-throughput phenotyping by UAV remote sensing: sensors 

and applications 

Crop high-throughput phenotyping, which uses numerous sensors able to collect large amounts of 

data on genotype variability (Shi et al., 2016) in fields, is considered a relevant scientific topic (Araus 

& Cairns, 2014; Tester & Langridge, 2010) for determining the phenotypes associated with novel 

genotypes (Furbank & Tester, 2011; Zaman-Allah et al., 2015). Crop phenotypic traits are determined 

by genotype x environment interactions (Yang et al., 2017) and can be divided into biophysical traits 

(e.g. biomass, height and leaf area index), biochemical traits (e.g. chlorophyll and nitrogen) and 

physiological traits (e.g. photosynthesis) (Xie & Yang, 2020). Rapid methods to characterize crop 

traits are essential in plant breeding (Banerjee et al., 2020). However, traditional phenotyping 

methods for evaluating the phenotypic traits are time-consuming as the collection of phenotypic data 

is done manually (Araus & Cairns, 2014). This represents a bottleneck for the selection of phenotypic 

traits of novel genotypes (White et al., 2012). Therefore, high-throughput phenotyping (HTP) 

platforms based on remote sensing, such as satellites and unmanned aerial vehicles (UAVs), have 

recently been used (Shi et al., 2016; Wang et al., 2019). For HTP applications, the satellite platform, 

due to the lack of spatial resolution for the identification of crop traits, is not suitable for monitoring 

small plots of field trials with numerous genotypes (Gevaert et al., 2015; Han-Ya et al., 2010). On 

the contrary, the UAV platform is a suitable tool for HTP (Berni et al., 2009; Liebisch et al., 2015) 

for its ability to capture high-resolution images, so it has been widely used in breeding programs 

(Gracia-Romero et al., 2019; Ostos-Garrido et al., 2019; Su et al., 2019; Varela et al., 2021; Yang et 

al., 2017; Zhou et al., 2019). UAV based remote sensing for HTP has been employed in many crops 

https://www.grace-bbi.eu/
https://www.grace-bbi.eu/
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(Feng et al., 2021). UAV platforms can be equipped with different types of sensors, such as Red-

Green-Blue (RGB), multispectral, hyperspectral, thermal cameras, and LIDAR (Xie & Yang, 2020) 

which are used to monitor the crop’s phenotypic traits (Rahaman et al., 2015; Zhang & Kovacs, 

2012). RGB, multispectral, and hyperspectral UAV sensors based on spectral imaging acquire the 

reflectance of crops on different spectral bands (Yang et al., 2017). RGB sensors are commonly used 

by UAVs in crop phenotyping due to their high spatial resolution and relatively low cost (compared 

with other sensors), but they have only three bands in the visible spectral region (Feng et al., 2021). 

On the contrary, the hyperspectral sensors acquire images with hundreds and even thousands of 

continuous bands in the visible and near-infrared (NIR) spectral regions, but the cost is higher than 

RGB and multispectral sensors (Feng et al., 2021). Multispectral sensors represent a compromise 

between the cost and the number of spectral bands compared to RGB (low cost and low number of 

spectral bands) and hyperspectral sensors (high cost and high number of spectral bands). The 

multispectral sensors have a small number of spectral bands (between 4 and 10) that are generally in 

the visible and NIR spectral regions (Guo et al., 2021). They are widely used for UAV HTP  for their 

spatial and spectral resolution and because are usually small, light and with an acceptable cost (Xie 

& Yang, 2020). For this reason, a wide variety of UAV multispectral sensors are available on the 

market with different spectral characteristics and the most common are reported in Table 1.1. 

 

Table 1.1 Comparison of centre (centre wavelength in nm) and of FWHM (full width at half maximum in nm) of the 
most common UAV multispectral sensors available on the market. 

 

The UAV multispectral sensors can calculate several vegetation indices (VIs) used in precision 

agriculture applications. The VIs are obtained by the combination of spectral bands, such as the 

Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1973), the Enhanced Vegetation 

Sensor 
Blue Green Red Red edge Near-infrared 

centre FWHM centre FWHM centre FWHM centre FWHM centre FWHM 

DJI P4 450 16 560 16 650 16 730 16 840 26 

MicaSense RedEdge-MX 475 32 560 27 668 14 717 12 840 57 

Parrot Sequoia - - 550 40 660 40 735 10 790 40 

Sentera 6X 475 30 550 20 670 30 715 10 840 20 

SlantRange 4P 470 100 550 100 650 40 710 20 850 100 

Tetracam Micro-MCA4 490 10 550 10 680 10 - - 800 10 

YuSense MS600 PRO 450 35 555 25 660 20 720 10 840 35 
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Index (EVI) (Huete et al., 2002) and the Modified Chlorophyll Absorption in Reflectance Index 

(MCARI) (Daughtry et al., 2000), and they are widely used to monitor crop traits. The spectral 

reflectance and the VIs are used to estimate or predict many crop traits using statistical and physical 

methods (see section 1.3). Several crop traits have been estimated using UAV-based remote sensing, 

such as plant height (Volpato et al., 2021), fraction of absorbed photosynthetically active radiation 

(Lv et al., 2021), canopy cover (Makanza et al., 2018), aboveground biomass (Han et al., 2019), yield 

(Johansen et al., 2020; Wang et al., 2019), leaf area index (Potgieter et al., 2017), green leaf area 

index (Blancon et al., 2019),  leaf chlorophyll content (Wan, Zhang, et al., 2021), leaf nitrogen content 

(Xu et al., 2021), stay-green (Liedtke et al., 2020) and senescence dynamics (Hassan et al., 2018). 

Crop yield is considered one of the most important traits for phenotyping (Xie & Yang, 2020). The 

yield trait of biomass crops has also been investigated using UAV remote sensing for HTP, as reported 

by Li et al. (2020) for switchgrass and Wang et al. (2019) for perennial ryegrass. Several remote 

sensing studies have focused on yield prediction based on land surface phenology (LSP) (de Beurs & 

Henebry, 2005; Ji et al., 2021; Meroni, d’Andrimont, et al., 2021) which considers the development 

of crops using time series of VIs (Peng et al., 2018; Sakamoto et al., 2013). LSP aims to determine 

spatial and interannual variation in crop phenology using various descriptors derived from the time 

series of VIs and these descriptors are used to predict yield (Evans & Shen, 2021). LSP descriptors 

include the start of the season (SOS), the peak of the growing season, the stay-green duration (onset 

of senescence), the end of the season (EOS), and the growing season length (de Beurs & Henebry, 

2010). Among the available descriptors of LSP, the peak of a VI is one of the most important 

descriptor for crop yield prediction, such as the peak of NDVI (Montazeaud et al., 2016) and EVI2 

(Liu et al., 2019) for grain yield and the peak of GNDVI for biomass yields of perennial grass 

(Hamada et al., 2021). 

1.3 Estimation of phenotypic crop traits: statistical and physical 

methods 

Crop trait estimations using remote sensing are grouped into two main methods: the statistical method 

and the physical method (Baret & Buis, 2008). Both methods have expanded to integrate hybrid 

methods over the last years (Verrelst, Camps-Valls, et al., 2015). This methodological expansion has 

divided the estimation methods into four categories (Verrelst et al., 2019): i) parametric regression 

methods, ii) nonparametric regression methods, iii) physically based model inversion methods, and 

iv) hybrid regression methods (Figure 1.1). Parametric regression methods are widely used for their 

simplicity and ease of development (e.g. linear regression) and are applied in crop phenotyping 

studies to link VIs derived from multispectral remote sensing with crop traits (Machwitz et al., 2021). 
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Contrary to parametric regression methods, nonparametric regression methods optimize the 

regression algorithm by learning phase based on training data and by including weights (coefficients) 

which are adjusted to minimize the estimation error (Verrelst et al., 2019). Among nonparametric 

regression methods, nonlinear nonparametric methods, also called machine learning regression 

algorithms, are typically used for crop trait estimations. Machine learning (ML) regression algorithms 

are increasingly used in HTP as many VIs exhibit nonlinear relationships with their associated crop 

traits. Several ML algorithms were used for crop trait estimation, including artificial neural network 

(ANN), k-nearest neighbour (kNN), gaussian regression process (GPR) and random forest (RF). The 

ML algorithms are also used for the yield prediction of many crops (Jeong et al., 2016; Marques 

Ramos et al., 2020). RF is one of the most often used algorithms in many remote sensing analyses 

(Holloway & Mengersen, 2018). RF does not suffer from overfitting, can manage a high training size 

and has proven to be robust to outliers and noise (Belgiu & Drăguţ, 2016). For example, the RF 

algorithm was used to estimate crop traits, such as crop biomass (Han et al., 2019) and yield (Johansen 

et al., 2020), from UAV multispectral images. However, the main limits of the ML models are in the 

training set size (Millard & Richardson, 2015) and in the unreliability of predictions made beyond 

the range of values of the parameters present in the training set (Shah et al., 2019). In addition, the 

ML models have demonstrated a limited transferability to different environments, cropping systems 

and growing seasons (Vuolo et al., 2013). For these reasons, the transferability of ML models must 

be an important topic to consider in future studies on UAV applications in agricultural sciences 

(Johansen et al., 2020). Physically based model inversion methods such as radiative transfer models 

(RTMs) are widely used to overcome crop trait estimation transferability problems and with respect 

to statistical methods (parametric and nonparametric regression methods) have the advantage that 

they minimize the reliance on in situ data (Atzberger et al., 2015). One of the most popular RTMs is 

the PROSAIL model (Berger et al., 2018), which simulates canopy reflectance by combining the leaf 

PROSPECT model (Jacquemoud & Baret, 1990) and the canopy SAIL model (Verhoef, 1984). 

Recently, studies have demonstrated that coupling UAV remote sensing with the PROSAIL model is 

a suitable approach for crop trait estimations for HTP (Jay et al., 2017; Wan, Zhang, et al., 2021; 

Wan, Zhu, et al., 2021). The look-up table (LUT) strategy is used for the inversion of the PROSAIL 

model. The LUT strategy is based on the generation of simulated spectral reflectance for several 

combinations of canopy and leaf parameters and, through the application of a cost function, the 

spectral reflectance that most closely resembles the measured one is identified (Verrelst et al., 2019). 

However, the several combinations of values of the parameters can generate similar canopy 

reflectance causing the ill-posed problem of the PROSAIL model inversion (Atzberger, 2004). 

Indeed, the use of multiple solutions (instead of the single best solution) (Darvishzadeh et al., 2008; 
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Sehgal et al., 2016) and the use of priori knowledge on the ranges of input parameters (Meroni et al., 

2004) have been evaluated to resolve the ill-posed problem. The hybrid regression methods combine 

the physically based methods with nonparametric regression methods. The nonparametric models 

trained with simulated reflectance values with the PROSAIL model are used as inversion strategies 

for crop trait estimations. The hybrid regression methods exploit the generic properties of physically 

based methods with the flexibility and computational efficiency of nonparametric regression methods 

(Verrelst, Rivera, et al., 2015). The hybrid regression methods used in several studies are based on 

machine learning algorithms such as ANN (Atzberger, 2010), GPR (Verrelst et al., 2016) and RF 

(Doktor et al., 2014). Generally, both statistical and physical methods can estimate crop traits, each 

with advantages and disadvantages. This suggests that UAV remote sensing based on crop trait 

estimations using statistical or physical methods can be used as a tool for high-throughput 

phenotyping (HTP) and could substitute the field measurements used to evaluate the crop’s 

phenotypic traits. 

 

 

Figure 1.1 Schematic overview of the main estimation methods (Verrelst et al., 2019). 

 

1.4 Objectives 

The use of suitable platforms for high-throughput screening of different hybrids of miscanthus and 

cultivars of hemp could support breeding programs. A suitable platform widely used in other crops 
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for high-throughput phenotyping (HTP) is the unmanned aerial vehicle (UAV). UAV remote sensing 

can phenotype crop traits through multispectral sensors that acquire spectral images useful for 

vegetation indices (VIs) calculation. However, the use of UAV multispectral remote sensing for HTP 

exhibit many research gaps which are: 

G1. Issue of UAV multi-sensor interoperability. 

G2. Use of the time series of VIs from UAV for yield prediction. 

G3. Assessment of the models’ transferability. 

G4. Evaluation of the crop traits dynamics during the growing season using UAV remote sensing. 

G5. Crop trait estimations of miscanthus and hemp for HTP. 

Regarding the research gaps, many multispectral UAV sensors with different spectral characteristics 

and consequently with differences of VIs between sensors are available on the market, giving rise to 

the issue of UAV multi-sensor interoperability (research gap G1). Apart from this, the time series of 

VIs are widely used in satellite remote sensing applications for crop monitoring and for crop yield 

predictions using the descriptors of land surface phenology (LSP) derived from the time series of VIs. 

Indeed, the acquisition of data time series of VIs from UAV requires enough time to carry out multiple 

flights in the fields (research gap G2). However, the UAV market and the number of UAV users are 

constantly growing, and the use of the time series of VIs from UAV must be evaluated, in particular 

for HTP applications where the satellite platform is not suited to monitor small plots of field trials 

with numerous genotypes. Other research gaps of the HTP studies concern crop trait estimations. 

Indeed, statistical methods are typically used to link VIs to crop traits, but these models have a limited 

transferability to different environmental conditions (research gap G3). Therefore, new studies are 

needed to assess the transferability of statistical models, such as machine learning (ML), for UAV 

applications in HTP. The physical method, such as the PROSAIL model, is widely used to overcome 

the issue of transferability of crop trait estimations. However, to date, in the HTP applications, only 

time series VIs data from UAV and not the estimated crop traits of PROSAIL or ML models are used 

to evaluate the dynamics of the crop traits throughout the growing season (research gap G4). A 

statistical approach that can be an opportunity for the HTP from UAV remote sensing is the 

generalized additive model (GAM). GAM can capture the dynamic aspect of crop traits, and it has 

been successfully featured in several research fields. Therefore, research studies are needed to 

evaluate the combination of multiple UAV flights, estimation models and GAM analysis. Finally, 

there are no studies that have focused on the estimation of crop traits of hemp and miscanthus from 

UAV multispectral images for HTP applications (research gap G5). To better deepen the knowledge 
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on these gaps, the research question of this thesis is: “Is UAV multispectral remote sensing a suitable 

platform for high-throughput phenotyping of hemp and miscanthus traits?” 

To answer this question, the objectives of the thesis are: 

O1. To estimate hemp and miscanthus traits from UAV multispectral images for HTP. 

O2. To evaluate the transferability of the ML models using independent datasets for model 

validation. 

O3. To predict the yield for improving the logistics biomass supply chain of miscanthus. 

O4. To evaluate the importance of VIs in the ML models for crop trait estimations and yield 

prediction of miscanthus. 

O5. To identify the most accurate PROSAIL model inversion method for hemp trait estimations 

by comparing inversion methods. 

O6. To link VIs calculated from UAV multispectral sensors with different spectral characteristics 

to improve multi-sensor interoperability. 

O7. To phenotype the dynamics of the crop traits of contrasting miscanthus hybrids and hemp 

cultivars. 

These objectives result in the following hypotheses: 

H1. The ML models and PROSAIL model can be used to estimate traits of miscanthus hybrids 

and hemp cultivars. 

H2. The quality training data can develop robust ML models to overcome the transferability 

problem. 

H3. The peak derived from the VIs time series of UAV can be used to predict the yield of 

miscanthus. 

H4. The spectral bands used for calculating the VIs have different importance depending on the 

crop traits to be estimated.  

H5. The hybrid regression inversion methods will better estimate the crop traits than LUT 

inversion methods of the PROSAIL model. 

H6. The PROSAIL model can be used to derive equations able to link multi-sensor VIs and to 

overcome the differences of VIs between sensors. 

H7. The GAM analysis, applied to the time series of the crop traits estimated by ML or PROSAIL 

model inversion, can be used for phenotyping the dynamics of the crop traits of contrasting 

miscanthus hybrids and hemp cultivars. 



Chapter 1  

11 

 

1.5 Thesis outline  

The chapters of this thesis are based on field research and the ones addressing hypotheses (1.4 

Objectives) are reported in Table 1.2. 

 

Table 1.2 Chapters and hypothesis. 

Chapter Hypothesis 

2 H1, H5, H7 

3 H1, H3, H4, H6 

4 H1, H2, H4, H7 

 

Chapter 2 compares hybrid and look-up table (LUT) inversion methods of the PROSAIL model for 

the leaf area index (LAI) and leaf chlorophyll content (LCC) estimation of hemp. It also explores the 

possibility of using GAM to combine multiple UAV flights and PROSAIL for phenotyping the LAI 

and LCC dynamics throughout the whole growing season. For this chapter, LAI and LCC 

measurements were collected on two contrasting hemp cultivars, green and yellow, under different 

nitrogen fertilisation levels during two growing seasons. 

Chapter 3 estimates the crop traits, such as light interception, plant height, green leaf biomass and 

standing biomass, and predicts the yield of the novel miscanthus hybrids using the ML algorithm 

random forest from UAV multispectral images. This chapter also used the PROSAIL model to derive 

VIs link equations to improve sensor interoperability. The field trials were carried out in Italy and 

United Kingdom using two different UAV multispectral sensors. 

Chapter 4 estimates the moisture content of miscanthus biomass from UAV multispectral images 

using the ML algorithm random forest (RF) and evaluates their transferability. This chapter also 

explores the application of GAM to moisture content time series estimated from the RF model for 

phenotyping the dynamics of senescence and identifying stay-green traits of contrasting miscanthus 

hybrids. The moisture content measurements were collected during two growing seasons in two 

locations. 

Chapter 5 summarizes the main results of this thesis concerning the objectives and the hypotheses. 

This chapter also discusses the scientific contribution of this PhD thesis and provides an outlook on 

future research. 
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Comparison of different inversion methods of the PROSAIL model for 

hemp trait estimations by UAV-based phenotyping 

 

Abstract 

In this chapter, an unmanned aerial vehicle (UAV) multispectral remote sensing platform was used 

to estimate leaf area index (LAI) and leaf chlorophyll content (LCC) of two contrasting hemp 

cultivars, a green and a yellow one, during two growing seasons under four nitrogen fertilisation 

levels. The hemp traits were estimated by the inversion of the PROSAIL model from UAV 

multispectral data. Look-up table (LUT) and hybrid regression inversion methods were compared for 

LAI and LCC estimation. The LAI trait was estimated with more accuracy than the LCC trait. The 

hybrid methods performed better than LUT methods, both for LAI and LCC, and the best accuracies 

were achieved by random forest (RF) for the LAI (0.76 m2 m-2 of RMSE) and by gaussian process 

regression (GPR) for the LCC (10.39 µg cm-2 of RMSE). High-throughput phenotyping (HTP) was 

carried out by applying the generalized additive model (GAM) to the time series of traits estimated 

by the best inversion methods of the PROSAIL model from multiple multispectral UAV flights. The 

GAM analysis showed differences in the LAI and LCC dynamics between two hemp cultivars and 

between the nitrogen fertilisation levels that significantly affected their dynamics. The HTP based on 

UAV remote sensing proved to be a powerful tool to estimate hemp traits and to improve our 

understanding of the traits' dynamics of contrasting cultivars throughout the whole growing season. 

 

Keywords: Hemp, remote sensing, UAV, high-throughput phenotyping, trait estimation, PROSAIL, 

LUT, machine learning, inversion methods comparison, GAM. 
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2.1 Introduction 

Interest in hemp (Cannabis sativa L.) cultivation, which is expanding internationally (Amaducci et 

al., 2015), is related to the large number of products that can be obtained from its biomass (Crini & 

Lichtfouse, 2020), its high yield potential (up to 20 Mg ha-1) (Burczyk et al., 2008; Struik et al., 2000; 

Tang et al., 2016), low input requirements (Tang et al., 2017), and positive environmental impact 

(van der Werf, 2004). All these features make hemp an ideal crop for the bio-based sector. In fact, 

not only hemp produces raw material for a wide range of bio-based applications, but it also produces 

seeds for food applications (Amaducci et al., 2015; Tang et al., 2016), in this way avoiding issues 

linked to indirect land use change. Despite the large interest in hemp, its cultivation has not 

significantly expanded in the last years due to legal problems related to the presence of psychoactive 

cannabinoids but also to the limited innovation along the whole value chain (Venturi et al., 2007). In 

a recent EU project (MultiHemp), for the first time, innovative biotechnological tools have been 

applied for hemp breeding but so far the management of hemp cultivation and the monitoring of its 

growth have not benefitted from the application of innovative precision agriculture technologies. 

Remote sensing is a precision agriculture technology widely used to monitor crop growth (de Castro 

et al., 2021; Sishodia et al., 2020). Remote sensing platforms, such as satellites and unmanned aerial 

vehicles (UAVs), acquire a large volume of spectral data with high spatial and temporal resolutions, 

which are needed for applications in both precision agriculture (Segarra et al., 2020) and high-

throughput phenotyping (HTP) in the frame of breeding programs (Guo et al., 2021; Yang et al., 

2017).  The spectral data acquired from the remote sensing HTP platforms are used to estimate crop 

traits during the growing season (Blancon et al., 2019; Impollonia et al., 2022).  Leaf area index (LAI) 

and leaf chlorophyll content (LCC) are among the most important crop traits estimated in HTP 

applications (Potgieter et al., 2017; Xie & Yang, 2020).  Spatial and temporal information on LAI 

and LCC are usually regarded as relevant traits to monitor the status of crop growth (Duan et al., 

2019). Two main methods are used to estimate LAI and LCC using spectral data via remote sensing: 

i) statistical methods such as linear regression or machine learning, and ii) physical method based on 

radiative transfer models (RTMs) inversion. RTMs have the advantage, over the statistical method, 

to minimize the reliance on in situ data (Atzberger et al., 2015). One of the most popular RTMs is the 

PROSAIL model (Berger et al., 2018), which simulates the canopy reflectance by combining the leaf 

PROSPECT model (Jacquemoud & Baret, 1990) and the canopy SAIL model (Verhoef, 1984). Two 

main methods are commonly used for the PROSAIL model inversion: i) look-up tables (LUTs) 

(Atzberger et al., 2015; Verrelst et al., 2014; Verrelst, Rivera, et al., 2015) based on a cost function; 

and ii) hybrid regression method (Verrelst et al., 2019) based on machine learning techniques such 
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as artificial neural network (ANN) (Atzberger, 2010), gaussian process regression (GPR) (Verrelst et 

al., 2016) and random forest (RF) (Doktor et al., 2014). However, the diverse combinations of crop 

traits can generate similar canopy reflectance causing the ill-posed problem of the PROSAIL model 

inversion (Atzberger, 2004). To resolve this issue, several strategies have been evaluated, such as the 

use of multiple solutions (instead of the single best solution) (Darvishzadeh et al., 2008; Sehgal et 

al., 2016) and the use of a priori knowledge on the ranges of input parameters (Meroni et al., 2004). 

Recently, several studies have demonstrated that the coupling of UAV remote sensing and the 

PROSAIL model enables reliable estimations of crop traits for HTP purposes, such as LAI and LCC 

(Duan et al., 2014; Jay et al., 2017; Sun et al., 2021; Wan, Zhang, et al., 2021; Zhu et al., 2019). 

These studies only evaluated the ability of the PROSAIL model to estimate crop traits, without 

characterizing the dynamic of crop traits evolution along the growing season using the values 

estimated by the PROSAIL model. On the contrary, Impollonia et al. (2022) demonstrated that HTP 

obtained by combining multiple UAV flights, machine learning estimation models, and generalized 

additive model (GAM) can characterise the dynamics of crop traits. However, no studies have yet 

investigated this combination featuring PROSAIL instead of machine learning models to characterise 

the seasonal dynamic of crop traits for HTP. Additionally, to our knowledge, there is no study that 

has focused on the estimation of LAI and LCC of  hemp from UAV multispectral images for precision 

agriculture applications.  

In this context, the goals of this study were: i) to estimate the hemp traits, leaf area index (LAI) and 

leaf chlorophyll content (LCC), by UAV-based phenotyping using the inversion of the PROSAIL 

model, ii) to compare two inversion methods of the PROSAIL model: look-up table (LUT) and hybrid 

regression methods, and iii) to characterise the dynamics of crop traits (LAI and LCC) of two 

contrasting hemp cultivars (a yellow and a green cultivar) under different nitrogen fertilisation levels 

via generalized additive model (GAM). 

2.2 Materials and methods 

2.2.1 Experimental design 

The field experiments were conducted at the CERZOO research centre (45°00′11.70″ N, 9°42′35.39″ 

E) in the province of Piacenza (NW Italy) during the years 2020 and 2021 (Figure 2.1). The two 

cultivars 'Futura 75', a conventional green one, and 'Fibror 79', a yellow-stalked one, both developed 

and provided by Hemp-it (France), were sown on the 6th and on the 9th of April, in 2020 and 2021, 

respectively. Sowing density and depth were about 45 kg ha-1 and 3 cm, respectively.  The 

experimental layout was a complete randomised block design with 4 levels of nitrogen fertilisation: 
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0, 25, 50 and 100 kg N ha-1, with n=4 replicates for a total of n= 32 plots (see Blandinières (2022) for 

details on experimental design).  

 

 

Figure 2.1 Experimental field design and drone picture of hemp trials in (a) 2020 and (b) 2021. The destructive samplings 
of 1 m2 are observable in drone pictures. 

 

2.2.2 Crop measurements 

Four georeferenced samplings were carried out for each plot across the two growing seasons (total 

n=256) to measure leaf area index (LAI) (Figure 2.2). A ceptometer was used (AccuPAR LP-80, 

Decagon Devices, Inc., Pullman, Washington, USA) when the sun reached the zenith (between 12 

a.m. and 2 p.m.) and five-six measurements per plot were taken to measure LAI non-destructively, 

on the same area that was sampled by Blandinières (2022) (Figure 2.1). At the same time (Figure 

2.2), leaf dry content per unit leaf area (Cm) and leaf water per unit leaf area (Cw) were determined 

from all the leaves of a three-to-five plant subsample. The leaves were separated from the stems and 

transferred to a fridge at -18 °C. The leaf surface was determined by scanning the leaves, and the 

leaves were subsequently oven dried at 65 °C and weighted (see Blandinières (2022) for details on 

crop measurements). The Cm (g cm-2) and Cw (g cm-2) were calculated as the ratio of the dry weight 

(Cm) or of the water weight (Cw) of the leaves to their surface. Subsequently, leaf chlorophyll content 
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(LCC) samples were collected at the top of the canopy, rapidly stored in ice, and then stored in a 

fridge at -18 °C. Chlorophyll content was measured by using a chlorophyll analysis protocol based 

on Ritchie (2006) and Warren (2008) protocols. The chlorophyll analysis was only carried out on the 

samples from 2020.  

2.2.3 UAV multispectral data 

The unmanned aerial vehicle (UAV) DJI Matrice 210 RTK (SZ DJI Technology Co., Shenzhen, 

Guangzhou, China) was used in the experiment. The UAV was equipped with a MicaSense RedEdge-

Mx (MicaSense, Seattle, WA, USA) camera to collect the multispectral images. RedEdge-Mx camera 

acquired the images in 5 spectral bands: blue (475 nm centre, 32 nm FWHM), green (560 nm centre, 

27 nm FWHM), red (668 nm centre, 14 nm FWHM), red edge (717 nm centre, 12 nm FWHM) and 

near-infrared (840 nm centre, 57 nm FWHM). The UAV flights were carried out at the same time as 

crop measurements, and supplementary flight missions (Figure 2.2) were also carried out to improve 

the analysis of the crop traits dynamics derived from multiple UAV flights as suggested by Impollonia 

et al. (2022). All flights were performed in clear sky conditions between 11 a.m. and 3 p.m. The flight 

altitude above ground level (AGL) was 50 m, the forward overlap was set at 80% and the lateral 

overlap was set at 75% of the images. The ground sampling distance (GSD) was 2.78 cm, and the 

flight speed was set at 3 m s-1. The DJI Pilot software (SZ DJI Technology Co., Shenzhen, 

Guangzhou, China) was used for the flight planning and automatic mission control. The reflectance 

panel provided by MicaSense, and the light sensor mounted at the top of the UAV were used for the 

radiometric calibration of the images. Pix4D mapper (Pix4D, S.A., Lausanne, Switzerland) software 

was used for radiometric calibration and orthomosaic generation. The experimental designs were 

drafted in AutoCAD (Autodesk, San Rafael, California, USA) and subsequently georeferenced using 

QGIS software (QGIS Development Team, 2021). Polygons of 1 m2 were also drafted and 

georeferenced on the position of the destructive samplings, in order to extract the mean value of 

spectral data of each plot for the inversion PROSAIL model validation. For the time series analysis 

based on multiple UAV flights, the sampled quadrats were subtracted from the experimental designs 

to eliminate the noise caused by these destructive measurements on the multispectral images as shown 

in Figure 2.1. 
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Figure 2.2 Seasonal calendar of UAV flights and crop measurements (LAI, LCC, Cm and Cw) during the two years 
(2020 and 2021). 

 

2.2.4 PROSAIL model  

LAI and LCC of hemp cultivars were estimated by the inversion of the PROSAIL model. The 

PROSAIL model combine the PROSPECT and SAIL models, simulating the canopy reflectance from 

400 to 2500 nm, using 10 parameters of input. Four of these ten parameters were used to simulate the 

leaves’ optical properties (PROSPECT model): leaf structure parameter (N), leaf chlorophyll content 

(LCC), leaf equivalent water thickness (Cw) and leaf dry matter content (Cm). The six other parameters 

were used to simulate the bidirectional reflectance of the canopy (SAIL model): leaf area index (LAI), 

average leaf inclination angle (ALIA), hotspot parameter (hot), solar zenith angle (tts), observer 

zenith angle (tto) and relative azimuth angle (psi). The soil reflectance was also considered in the 

PROSAIL model and was selected from the database ‘ICRAF-ISRIC Soil VNIR Spectral Library’ of 

the Soil Information System (ISIS) of the International Soil Reference and Information Centre 

(ISRIC). The choice of the soil reflectance was done, firstly by resampling the Italian soils reflectance 

based on UAV camera characteristics (MicaSense RedEdge-Mx), secondly by calculating the 

differences of soils reflectance between the Italian soils (soil database) and the soil observed in this 

study (the reflectance of soil was extracted from the UAV multispectral images) and finally the soil 

with less difference in reflectance was used in the PROSAIL model. In order to select the ranges of 

the canopy and leaf parameters, the field measurements acquired during the two growing seasons 

were used (see 2.2.2 Crop measurements), which is also an efficient way of reducing the ill-posed 

problem as suggested by Meroni et al. (2004). The ALIA range was set between 10 and 30 for the 

planophile nature of the hemp canopy (Meijer et al., 1995). The PROSAIL inputs (parameter 

combinations) and outputs (spectral reflectance) are used for look-up table (LUT) generation. The 
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hsdar R package (Lehnert et al., 2019) was used to simulate the canopy reflectance of the PROSAIL 

model using the function PROSAIL which uses the FORTRAN code of the PROSAIL model (Version 

5B). The LUT generated included 86,400 parameter combinations following the ranges (minimum 

and maximum) and the steps of the parameters summarized in Table 2.1. Regarding the parameter 

combinations used for LUT generation, all parameter combinations were considered for LAI and 

LCC estimation as the hemp cultivars evaluated in this study exhibited large differences in traits (e.g. 

high LAI and low LCC for 'Fibror 79' and high LAI and high LCC for 'Futura 75' at the end of the 

vegetative phase) throughout the whole growing season (e.g. low LAI and high LCC at the start of 

the growing season and low LAI and low LCC at the end of the growing season). The spectral 

reflectance simulated (outputs) were resampled based on MicaSense RedEdge-Mx characteristics 

camera (see section 2.2.3).  

 

Table 2.1 Ranges of input parameters for the PROSAIL model for generating the LUT. 

Parameter Abbreviation Unit Values 

Leaf 

Structure parameter N Unitless 1.5 

Chlorophyll content LCC µg cm-2 5 – 60 (step =5) 

Equivalent water thickness Cw g cm-2 0.006 – 0.03 (step = 0.004) 

Dry matter content Cm g cm-2 0.004 – 0.007 (step = 0.001) 

Canopy 

Leaf area index LAI m2 m-2 0.1 – 6 (step = 0.3) 

Average leaf inclination angle ALIA deg 10 – 30 (step = 10) 

Hotspot parameter hot m m-1 0.1 

Solar zenith angle tts deg 20 – 30 (step = 5) 

Observer zenith angle tto deg 10 

Relative azimuth angle psi deg 190 – 195 (step = 5) 

 

2.2.5 Inversion methods of the PROSAIL model 

Two inversion methods were compared in this study: look-up table method based on a cost function 

and hybrid regression method based on machine learning techniques. 

2.2.5.1 The look-up table inversion method 

The look-up table (LUT) was sorted using the cost function based on root mean square error (RMSE) 

to find the solution to the inverse problem for the measured canopy reflectance (Darvishzadeh et al., 

2008; Sehgal et al., 2016). The RMSEr cost function (Equation 2.1), between the measured 

reflectance and the simulated reflectance found in the LUT, was calculated as: 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 = �∑ �𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚𝜆𝜆 − 𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝜆𝜆�2𝑛𝑛𝑖𝑖=1 𝑛𝑛  Equation 2.1 

 

where 𝑛𝑛 is the number of spectral bands, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚 is a measured reflectance at spectral band λ and 𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚 is a simulated reflectance at spectral band λ in the LUT. Two LUT methods were tested 

to find the solution to the inversion problem. The first solution, single best solution, was found as the 

set of input parameters corresponding to the reflectance in the LUT that provides the smallest RMSEr, 

and it was called here as LUT-I. However, this solution is not always the optimal solution since it 

may not be unique (ill-posed problem).  In order to solve this problem, the second solution, multiple 

best solutions, was tested using the mean value of parameters corresponding to the best 100 solutions 

(i.e. having the smallest sorted RMSEr) and it was called here as LUT-II.  

2.2.5.2 The hybrid regression inversion method 

The hybrid methods utilised the parameter combinations (y) and the simulated spectral reflectance (x) 

from the PROSAIL model, used for the LUT generation, for training a machine learning regression 

model. Therefore, the hybrid regression methods allow replacing the field measurements needed to 

train nonparametric models with PROSAIL input variables (Verrelst et al., 2019). This study 

evaluated different machine learning regression models: random forest (RF), gaussian process 

regression (GPR), artificial neural network (ANN) and ensemble method (EM) obtained combining 

RF, GPR and ANN via stacking. The machine learning regression models were built using the caret 

and caretEnsemble R packages (Kuhn, 2008; Mayer, 2019). The structural hyperparameters of the 

machine learning regression models were optimized by grid-searching method using cross-

validation. The training dataset was created using a stratified random sampling method by LAI, LCC 

and Cm values distribution of the LUT. The function of caretList was used for building the machine 

learning regression models using the method rf, gaussprRadial and nnet, for RF, GPR and ANN, 

respectively. The EM model was built using the function caretStack that finds a good linear 

combination of the models (RF, GPR and ANN). 

2.2.5.3 Comparison of inversion methods 

The field measurements of LAI and LCC were used to validate the inversion methods of the 

PROSAIL model. The root mean square error (RMSE, Equation 2.2) and the normalized root mean 

square error (NRMSE, Equation 2.3) were used for inversion methods comparison and was calculated 

for each method as follows: 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛𝑖𝑖=1 𝑛𝑛  Equation 2.2 

𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (%) =  

�∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛𝑖𝑖=1 𝑛𝑛𝑦𝑦� 100 
Equation 2.3 

 

where 𝑛𝑛 is the sample number, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the estimated and measured value of each trait, and 𝑦𝑦� is 

the mean of the measured value. The performance metrics were also calculated for each season, for 

each cultivar, for each trait and for three different intervals of the traits. The LAI trait intervals 

investigated were less than 2 m2 m-2, between 2 m2 m-2 and 4 m2 m-2 and greater than 4 m2 m-2. The 

LCC trait intervals investigated were less than 20 µg cm-2, between 20 µg cm-2 and 40 µg cm-2 and 

greater than 40 µg cm-2. The LCC trait estimation was done only to the 2020 season because the LCC 

samples of 2021 were not analysed yet.  

2.2.6 GAM for crop phenotyping 

The hemp cultivar traits were estimated from multiple UAV flights (supplementary flights were also 

considered) using the best inversion methods for each trait for phenotyping the dynamics of LAI and 

LCC and identifying differences among cultivars and nitrogen fertilisation levels. The time series of 

LAI and LCC values estimated from the PROSAIL model inversion were fitted against the day after 

sowing (DAS). The statistical analysis of the hemp traits time series was carried out via a generalized 

additive model (GAM). The GAM is a non-parametric regression model which allows the integration 

of non-parametric smoothing functions and non-linear fitting of the variables. GAM models were 

fitted in R package mgcv (Wood, 2017). The fitted model used fixed factors such as season, block, 

cultivar, and nitrogen fertilisation levels, and a smooth for DAS, based on season and on interaction 

of cultivars and nitrogen fertilisation levels. 

2.3 Results 

2.3.1 Comparison of inversion methods for LAI trait estimation 

The results of the comparison of the different methods used for the inversion of the PROSAIL model 

for leaf area index (LAI) estimation is reported in Figure 2.3. Generally, the hybrid methods achieved 

better accuracies than look-up table (LUT) methods. Random forest (RF) achieved the highest 

accuracy with 0.76 m2 m-2 of RMSE and 26.8 % of NRMSE. LUT-I showed greater accuracy than 

LUT-II which ranked last. The hybrid method with the worst accuracy was ensemble method (EM) 

with 0.88 m2 m-2 of RMSE and 31.3 % of NRMSE (Figure 2.3).  
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Figure 2.3 Estimated vs measured LAI of hemp with different inversion methods: (a) LUT-I, (b) LUT-II, (c) RF, (d) 

ANN, (e) GPR and (f) EM. 
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In Figure 2.4 the NRMSE values of the different methods, divided by years and cultivars, are reported. 

Generally, RF was the best method for both years and cultivars. The LUT methods showed high 

differences in NRMSE between years. ‘Fibror 79’ displayed a higher variability of NRMSE than 

‘Futura 75’ across the two years of experimentations (Figure 2.4). The different inversion methods 

were evaluated on three LAI intervals (Figure 2.5). The LUT methods achieved the lowest NRMSE 

when LAI was less than 2 m2 m-2 and achieved the highest NRMSE when LAI was greater than 4 m2 

m-2. In the LAI interval ranging from 2 m2 m-2 to 4 m2 m-2, RF achieved the best accuracy, but no 

relevant differences were observed between the other methods. The inversion methods, when LAI 

was less than 4 m2 m-2 were more accurate for ‘Futura 75’ than ‘Fibror 79’ while the opposite occurred 

when LAI was greater than 4 m2 m-2 (Figure 2.5). 

 

 

Figure 2.4 NRMSE of the inversion methods for LAI estimation according to the different cultivars and seasons. 
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Figure 2.5 NRMSE of the inversion methods for LAI estimation according to the different cultivars and three LAI 

intervals (LAI < 2 m2 m-2, LAI 2-4 m2 m-2 and LAI > 4 m2 m-2). 

 

2.3.2 Comparison of inversion methods for LCC trait estimation 

The results of the inversion methods of the PROSAIL model for the estimation of leaf chlorophyll 

content (LCC) are presented in Figure 2.6. The hybrid methods achieved better accuracies than LUT 

methods. Gaussian process regression (GPR) achieved the greatest accuracy with 10.39 µg cm-2 of 

RMSE and 40.5 % of NRMSE. The hybrid method that showed the worst accuracy was RF with 

11.26 µg cm-2 of RMSE and 43.9 % of NRMSE (Figure 2.6). NRMSE values of the different methods 

and for both cultivars are reported in Figure 2.7. Overall, the two cultivars displayed a similar 

NRMSE across the different inversion methods (Figure 2.7). The different methods were evaluated 

on three LCC intervals (Figure 2.8). The inversion methods, when LCC was less than 20 µg cm-2 

were more accurate for ‘Fibror 79’ than ‘Futura 75’ while the opposite occurred when LCC was 

greater than 40 µg cm-2.  
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Figure 2.6 Estimated vs measured LCC of hemp with different inversion methods: (a) LUT-I, (b) LUT-II, (c) RF, (d) 

ANN, (e) GPR and (f) EM. 
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Figure 2.7 NRMSE of the inversion methods for LCC estimation according to the different cultivars. 

 

 

Figure 2.8 NRMSE of the inversion methods for LCC estimation according to the different cultivars and three LCC 

intervals (LCC < 20 µg cm-2, LCC 20-40 µg cm-2 and LCC > 40 µg cm-2). 

 

2.3.3 Dynamics of LAI and LCC  

The best inversion methods, RF for LAI and GPR for LCC, were used to estimate LAI and LCC of 

the two hemp cultivars using the spectral band acquired from multiple unmanned aerial vehicle 

(UAV) flights during 2020 and 2021 growing seasons. Maps of LAI and LCC estimated on 105 days 

after sowing (DAS) during the growing season 2020 are reported in Figure 2.9. 
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Figure 2.9 Maps of LAI and LCC estimated on 105 DAS during the growing season 2020 by UAV multispectral images 

using the best inversion of the PROSAIL model (RF for LAI and GPR for LCC). 
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Generalized additive model (GAM) was applied to the time series of LAI and LCC estimated by the 

inversion of the PROSAIL model, with ‘Futura 75’ as a reference for estimating significant 

differences among the hemp cultivars during the growing season (Figure 2.10). The estimated 

difference of LAI between ‘Futura 75’ and ‘Fibror 79’ was significant from 91 DAS to 108 DAS, 

with higher values of LAI for ‘Fibror 79’ than for ‘Futura 75’; and from 129 DAS until the end of the 

growing season, but this time with higher values of LAI for ‘Futura 75’ than for ‘Fibror 79’ (Figure 

2.10). Higher values of LAI were observed in ‘Futura 75’ than ‘Fibror 79’ during the early phases of 

the growing season (until 72 DAS), but no significant differences were observed. The estimated 

difference of LCC was significant throughout the whole growing season, with higher values of LCC 

for ‘Futura 75’ than for ‘Fibror 79’ (Figure 2.10). The estimated difference of LCC showed an 

increase from the start of the growing season up to 75 DAS (estimated difference of 13.5 µg cm-2) 

and remained constant afterward until the end of the growing season. 

 

 

Figure 2.10 Traits’ dynamics of the two hemp cultivars according to the difference in estimated LAI and LCC with 

reference the green cultivar ‘Futura 75’ (dashed black line). The estimation of the differences time series was carried out 

by using a GAM. Solid and dashed coloured line denotes respectively significant (P<0.05) and not significant differences 

of the corresponding ‘Fibror 79’ compared to reference ‘Futura 75’. 

 

2.3.4 Effect of nitrogen fertilisation on LAI and LCC dynamics 

GAM was also used to analyse the effect of nitrogen fertilization on the dynamics of LAI and LCC 

of the two hemp cultivars. The reference used for estimating significant differences among nitrogen 

levels for each cultivar was the lowest fertilisation dose, 0 kg N ha-1 (Figure 2.11). The analysis 

showed that the effect of nitrogen dose was significant for both cultivars and trait. The largest 
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estimated differences were observed with the highest nitrogen level and decreased proportionally to 

the nitrogen dose.  The estimated difference of LAI was highest during early phases of the growing 

season and progressively decreased until the final harvest (Figure 2.11). LCC showed the highest 

estimated difference at the end of the vegetative growth from 60 DAS to 90 DAS approximately. LAI 

of ‘Futura 75’ showed a significant estimated difference throughout the whole growing season with 

100 kg N ha-1 nitrogen level and from the start of the growing season until 118 DAS and 103 DAS 

with 50 kg N ha-1 and 25 kg N ha-1 nitrogen levels, respectively. ‘Futura 75’ LCC showed a significant 

estimated difference from the start of the growing season until 144 DAS, 145 DAS and 82 DAS with 

100 kg N ha-1, 50 kg N ha-1 and 25 kg N ha-1 nitrogen levels, respectively (Figure 2.11). LAI of ‘Fibror 

79’ showed a significant estimated difference from the start of the growing season until 140 DAS, 99 

DAS and 70 DAS with 100 kg N ha-1, 50 kg N ha-1 and 25 kg N ha-1 nitrogen levels, respectively. 

‘Fibror 79’ LCC showed a significant estimated difference throughout the whole growing season with 

100 kg N ha-1 nitrogen level, from the 37 DAS and 40 DAS until 102 DAS and 141 DAS with 50 kg 

N ha-1 and 25 kg N ha-1 nitrogen levels, respectively (Figure 2.11). 

 

 

Figure 2.11 Dynamics of the estimated difference of LAI and LCC of the two cultivars with reference the nitrogen 

fertilisation level with 0 kg N ha-1 (dashed black line). The estimation of the differences time series was carried out by 

using a GAM. Solid and dashed coloured line denotes respectively significant (P<0.05) and not significant differences of 

the corresponding nitrogen fertilisation levels compared to reference nitrogen level with 0 kg N ha-1. 
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2.4 Discussion 

2.4.1 Evaluation of the inversion methods accuracy for the estimation of LAI and 

LCC 

This study focused on UAV-based remote sensing estimation of hemp traits to phenotype two 

contrasting cultivars and to support the application of innovative precision farming. 

Multispectral data acquired from unmanned aerial vehicle (UAV) in two growing seasons (2020 and 

2021) were used to estimate leaf area index (LAI) and leaf chlorophyll content (LCC) using inversion 

methods of the PROSAIL model. The UAV multispectral camera used in this study (MicaSense 

RedEdge-Mx), which includes five spectral bands, enabled a reliable estimation of LAI and LCC, 

achieving results comparable to those obtained in previous studies, conducted with both multispectral 

(Sun et al., 2021; Wan, Zhang, et al., 2021; Zhu et al., 2019) and hyperspectral UAV cameras (Duan 

et al., 2014; Wang et al., 2021). Among the different inversion methods present in literature, this 

study compared two look-up table (LUT) methods based on the RMSEr cost function (LUT-I and 

LUT-II), and four hybrid regression methods based on machine learning techniques (RF, GPR, ANN 

and EM) to identify the most accurate LAI and LCC estimation method. The results obtained with 

the LUT methods showed that the LUT-I method (single best solution) achieved a better accuracy 

than the LUT-II method (mean of 100 best solutions). Opposite results were reported, for 

heterogenous grassland, by Darvishzadeh et al. (2008) and for wheat by Sehgal et al. (2016). 

Regarding hybrid methods, the best accuracies were achieved with random forest (RF) for LAI and 

gaussian process regression (GPR) for LCC, which was also the most accurate method for estimating 

LCC in a study conducted on multi-crop by Verrelst et al. (2012).The worst accuracies were achieved 

by ensemble method (EM) for both LAI and LCC, which could be the consequence of the high 

correlation among the values predicted by the individual algorithms (RF, GPR and ANN), as already 

reported by Kamir et al. (2020). 

In this research, estimation of LAI and LCC was more accurate using hybrid methods than LUT ones, 

which is in agreement with what  was reported by Fei et al. (2012) and Zhang, Yang, et al. (2020), 

but not with findings of Sehgal et al. (2016) and Vohland et al. (2010) who found that the LUT 

inversion method was more accurate than hybrid methods. Ali et al. (2021), instead, did not find 

differences between the methods. However, accuracy is not the only criteria to consider when 

selecting the inversion method of the PROSAIL model. For example, studies have focused on the 

inversion run time, showing that hybrid methods are faster in performing the inversion compared to 

LUT methods (Ali et al., 2021; Verrelst et al., 2019; Verrelst, Camps-Valls, et al., 2015). 
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In this study, LAI estimation was more accurate than the estimation of LCC. This confirms the 

difficulty in estimating LCC already found in previous studies (Baret & Jacquemoud, 1994; 

Darvishzadeh et al., 2008; Sehgal et al., 2016), which is the consequence of the poor signal 

propagation from leaf to canopy scale, as demonstrated by Asner (1998). The lowest accuracy of LCC 

estimation was observed under 20 µg cm-2; this may have been caused by hemp bloom at the end of 

the season, which can affect reflectance data as found for rice cobs by Wan, Zhang, et al. (2021). On 

the other hand, analysing the accuracy of the LAI estimation, no relevant differences in NRMSE were 

observed in the two seasons (2020 and 2021) and in the three LAI intervals (< 2 m2 m-2, 2-4 m2 m-2 

and > 4 m2 m-2) for both cultivars. This proves that the inversion of the PROSAIL model can estimate 

LAI effectively, even on cultivars that have great LCC differences throughout the season. 

2.4.2 UAV remote sensing and GAM for phenotyping the dynamics of LAI and 

LCC 

High-throughput phenotyping (HTP) obtained by the combination of multiple UAV flights, 

estimation models of crop traits and generalized additive model (GAM) analysis can characterize the 

dynamics of relevant crop traits (Impollonia et al., 2022). In particular, this study focused on the 

application of UAV multispectral images for characterising LAI and LCC of hemp.  The time series 

of the traits estimated (with the best method for each trait) were used to characterise two hemp 

cultivars (a green and a yellow one), cultivated at different nitrogen fertilisation levels, using 

generalized additive model (GAM). The use of GAM to compare LAI dynamics of two hemp 

cultivars showed that LAI of 'Futura 75' tended to be higher (but not significantly) than 'Fibror 79' in 

the early phases of the growing season. At the end of the vegetative phase LAI was highest in 'Fibror 

79' and finally it became highest in 'Futura 75' during the seed maturing phase (Figure 2.10). The 

highest LAI of 'Futura 75' at the start of the growing season indicates that its canopy develops more 

rapidly than that of ‘Fibror 79’. This is in accordance with the results obtained by Blandinières (2022) 

on the same trial, as they showed that 'Fibror 79' was slower than 'Futura 75' to reach canopy closure. 

After 90 days after sowing (DAS), however, the LAI of 'Fibror 79' increases faster than in 'Futura 75' 

and become even significantly higher for 18 days (between 91 DAS and 108 DAS). This can be 

explained by the fact that 'Fibror 79' is a cultivar that flowers slightly later than 'Futura 75', hence, the 

senescence of 'Futura 75' starts sooner than for 'Fibror 79', explaining the observed dynamic of LAI 

differences between both cultivars. These results are in accordance with Herppich et al. (2020) who 

reported that the LAI peak of ‘Ivory’ (the yellow cv.), a cultivar that flowers earlier  than ‘Santhica 

27’ (the green cv.), was reached sooner than the LAI peak of ‘Santhica 27’. They also found that for 

the green cultivar ‘Santhica 27’ LAI remained the highest for the rest of the growing season. After 
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flowering, the same dynamics was observed in this study where the LAI of the green cultivar 'Futura 

75' was significantly higher than that of 'Fibror 79' during the seed filling phase. This could be due to 

the higher nitrogen content in 'Futura 75' leaves than in ‘Fibror 79’ ones. This could be due to the 

higher nitrogen content in 'Futura 75' leaves than in ‘Fibror 79’ ones, in line with the statement of 

Thouminot (2015) who stated that the yellow strain of hemp (i.e., Fibror 79) was due to a reduced 

capacity of nitrogen assimilation. Indeed, the dynamic of LCC observed in this study, linked to leaf 

nitrogen content (Wang et al., 2014), showed higher values for ‘Futura 75’ than for ‘Fibror 79’ 

throughout the whole growing season. The LCC estimated differences of the two hemp cultivars 

showed an increase from the start of the growing season until the 75 DAS and then remained constant 

until the end of the growing season (Figure 2.10). In order to characterize the dynamics of the crop 

traits, the nitrogen fertilisation effects were included in the GAM analysis. Nitrogen fertilisation had 

a great and significant effect on the LAI and LCC dynamics (Figure 2.11). As for LAI, the higher 

difference, between no nitrogen fertilisation (reference) and the other nitrogen fertilisation levels, 

were observed in the early phases of the growing season for both cultivars. These results are in 

accordance with those reported by Seleiman et al. (2013), who found that the nitrogen fertilisation 

treatments had a significant effect on LAI of hemp only at the start of the growing season (44 DAS). 

The higher difference of LAI between the nitrogen levels could be due to a greater nitrogen 

accumulation at the start of the growing season, as reported by Ivonyi et al. (1997). They found, for 

hemp, that the most intense phase of nitrogen accumulation occurred between 30 and 60 DAS, as 

79% of the total amount of nitrogen had effectively been accumulated after 60 DAS, in accordance 

with Seleiman et al. (2013). The intense nitrogen uptake during the early phases of the growing season 

could be explained by the general increase of differences of LCC until 60-80 DAS where was 

observed a peak of LCC differences (Figure 2.11). The increase of nitrogen fertilisation led to 

increases of nitrogen uptake and accumulation by the crop, with a subsequent significant increase of 

LCC, as reported by Yang et al. (2021). This relation was also observed in this study, as LCC 

dynamics had higher values at increasing levels of nitrogen fertilisation. After flowering, the LCC 

estimated differences decreased with the start of the senescence stage and the start of the chlorophyll’s 

degradation. 

2.5 Conclusion 

This study demonstrated that hemp traits can be estimated with good accuracy by the inversion of the 

PROSAIL model using multispectral images acquired by unmanned aerial vehicle (UAV). The leaf 

area index (LAI) can be estimated better than the leaf chlorophyll content (LCC).  Generally, the 

hybrid methods performed better than look-up table (LUT) methods, both for LAI and LCC, and the 
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best accuracies were achieved by random forest (RF) for the LAI and gaussian process regression 

(GPR) for the LCC. The high throughput phenotyping (HTP) of the crops can be carried out by 

applying the generalized additive model (GAM) to the time series of traits estimated by the inversion 

of the PROSAIL model from multiple multispectral UAV flights. The GAM analysis showed 

differences in the LAI and LCC dynamics between two hemp cultivars, yellow and green, and 

between the nitrogen fertilisation levels that significantly affected the traits’ dynamics. HTP based 

on UAV remote sensing proved a powerful tool to estimate crop traits and to improve our 

understanding of the traits’ dynamics of contrasting cultivars throughout the whole growing season.
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UAV remote sensing for high-throughput phenotyping and for yield 

prediction of Miscanthus by machine learning techniques 

 

Abstract 

Miscanthus is a tall perennial C4 rhizomatous grass with strong potential for sustainable biomass 

production and multiple co-benefits on marginal and contaminated lands, avoiding land competition 

with traditional food crops. Breeding programs in several countries are attempting to produce high-

yielding Miscanthus hybrids better adapted to different climates and end-uses. Remote sensing with 

unmanned aerial vehicles (UAVs) equipped with multispectral sensors holds great potential for high-

throughput phenotyping (HTP) of yield and quality traits. In this study, UAVs were flown fortnightly 

over ground phenotyped Miscanthus crops in Italy and the UK in 2020-21. Vegetation indices (VIs) 

derived from UAV multispectral images were used successfully to estimate yield traits (light 

interception, plant height, green leaf biomass and standing biomass) for diverse novel Miscanthus 

hybrids in Italy and in the UK using the random forest (RF) machine learning algorithm. RF algorithm 

and peak descriptor derived from time series of VIs were used to predict yield in order to improve the 

logistics biomass supply chain of Miscanthus. The Root Mean Square Errors (RMSE) of the RF 

models were 8.4 % for light interception, 42 cm for plant height, 1.3 Mg DM ha-1 for green leaf 

biomass, 5.8 Mg DM ha-1 for standing biomass estimations, and 2.3 Mg DM ha-1 for yield prediction. 

RF model showed a good capability to predict the yield months before the harvest both in Italy and 

in the UK. The PROSAIL model successfully linked VIs derived from different multispectral sensors 

on the UAVs used in Italy and UK. This ‘interoperability’ paves the way for linking VIs derived from 

different multispectral sensors carried by UAVs. The study demonstrates the potential for 

multispectral data from UAVs in HTP for genetic improvement and in the prediction of yield for 

providing important information needed to increase sustainable biomass production and to expand 

the bioeconomy. 

 

Keywords: Miscanthus, remote sensing, UAV, multispectral images, high-throughput phenotyping, 

trait estimation, yield prediction, machine learning, PROSAIL, multi-sensor interoperability. 
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3.1 Introduction 

Miscanthus is a leading perennial biomass crop that can provide high yields on marginal lands 

avoiding land competition with traditional food crops (Amaducci et al., 2017; Pancaldi & Trindade, 

2020; Shepherd et al., 2020). Yield is one of the most important traits of Miscanthus (Lewandowski 

et al., 2000) and has been the primary focus of the research portfolio on Miscanthus in the last ten 

years (Clifton-Brown et al., 2017; Clifton‐Brown et al., 2001; Jones et al., 2016). Yield depends not 

only on the climatic and soil characteristics but also on crop age, harvest date and the genotype/hybrid 

type (Jones et al., 2016). The rate of mature yield development varies with climate, but in general 

increases from 1-3 Mg ha-1 of dry matter (DM) in the first year to 6-8 Mg DM ha-1 in the second year 

and to 12 -30 Mg DM ha-1 in the third year and onwards in rainfed Northern and rainfed or irrigated 

Southern Europe (Clifton-Brown et al., 2007; Clifton‐Brown et al., 2001; Jeżowski, 2008; Larsen et 

al., 2014). Independent and collaborative efforts to breed high-yielding Miscanthus hybrids to 

produce sustainable biomass for the growing bio-based European market are ongoing in several 

countries (Clifton‐Brown, Harfouche, et al., 2019; Lewandowski et al., 2016; van der Cruijsen et al., 

2021). In the EU-BBI demo-project GRACE, we are evaluating novel highly upscalable seed-based 

Miscanthus hybrids (Clifton-Brown, Harfouche, et al., 2019; Clifton‐Brown, Schwarz, et al., 2019; 

Hastings et al., 2017; Pancaldi & Trindade, 2020; van der Cruijsen et al., 2021) in seven European 

countries (Awty-Carroll et al., 2022; Magenau et al., 2022). Most yield prediction to date has relied 

on crop growth models driven by climate and soil data with crop specific parameters (de Wit & van 

Diepen, 2008; Keating et al., 2003; MacKerron & Haverkort, 2004). For example, MISCANFOR is 

a crop growth model specifically developed to predict Miscanthus x giganteus yields in a wide range 

of environments (Hastings et al., 2009). It has been widely used and validated at European 

(Lewandowski et al., 2016) and national level (Zhang, Hastings, et al., 2020) for Miscanthus and 

other perennial biomass crops (Henner et al., 2020), but new parameterization data to predict yield 

production of the novel Miscanthus hybrids (Clifton‐Brown, Harfouche, et al., 2019) is required 

(Hastings et al., 2009).  

Yield trait screening and prediction using remote sensing with unmanned aerial vehicles (UAVs) can 

help both in breeding activities and in obtaining spatial and temporal information for optimising 

Miscanthus biomass supply chain logistics, from field to facilities creating bioproducts or biopower 

(Liu et al., 2019; Richter et al., 2016). Impollonia et al. (2022) recently demonstrated the feasibility 

of moisture content estimation in Miscanthus hybrids using vegetation indices (VIs) derived from 

UAV-based remote sensing. Remote sensing approaches can also be used to i) estimate yield-related 

traits for high-throughput phenotyping (HTP) (Blancon et al., 2019; Makanza et al., 2018; Potgieter 

https://www.grace-bbi.eu/


Chapter 3 

41 

 

et al., 2017), ii) calibrate crop growth models (Jongschaap, 2006; Prévot et al., 2003) and iii) predict 

the yield of many crops for commercial purposes (Ferchichi et al., 2022). Crop traits such as the plant 

height (Jin et al., 2018), the fraction of absorbed photosynthetically active radiation (fAPAR) (Upreti 

et al., 2019) and the aboveground biomass (Han et al., 2019) can be estimated from the VIs in 

combination with machine learning (ML) algorithms. One of the most used ML algorithms in remote 

sensing analyses for crop traits estimation is random forest (RF) (Adam et al., 2014; Verrelst et al., 

2019; Wang et al., 2016). RF proved to be robust to outliers and noise, does not suffer from 

overfitting, and can manage a high training size (Belgiu & Drăguţ, 2016). The use of ML algorithms 

shows great potentials in crop yield prediction (Hunt et al., 2019; Jeong et al., 2016; Marques Ramos 

et al., 2020; Senthilnath et al., 2016). In particular, the use of VIs’ time series helped to derive 

descriptors of land surface phenology (LSP, i.e. the spatial and temporal development of the vegetated 

land surface) (de Beurs & Henebry, 2005; Ji et al., 2021; Meroni, d’Andrimont, et al., 2021) such as 

the start of season (SOS), the peak of the growing season, the stay-green duration (onset of 

senescence), the end of the season (EOS), and the growing season length (de Beurs & Henebry, 2010). 

Among the available descriptors of LSP, the peak of a VI is one of the most important descriptor for 

crop yield prediction, such as the peak of NDVI (Montazeaud et al., 2016) and EVI2 (Liu et al., 2019) 

for grain yield and the peak of GNDVI for biomass yields of perennial grass (Hamada et al., 2021).  

However, the VIs values are influenced by many factors, such as sensor characteristics, atmospheric 

conditions during acquisition, viewing angle, field of view, and sun elevation (Psomiadis et al., 2017). 

In the context of crop phenotyping, where the field trials are often carried out in multi-location and 

with different UAV sensors, these factors could have a relevant effect on the compatibility of VIs. 

Among different sensors characteristics, the full width at half maximum (FWHM) is the main factor 

that influences the comparability of VIs values among different sensors (Théau et al., 2010). Indeed, 

due to the different spectral characteristics of the UAV multispectral sensors available on the market, 

differences among VIs derived from multiple UAV sensors for the same target can be found 

(Psomiadis et al., 2017). For this reason, there is a need to increase the interoperability of the sensors 

using equations able to overcome these differences through advanced linking procedures between the 

VIs of sensors (Emilien et al., 2021; Hoque & Phinn, 2018). The multi-sensor interoperability is an 

important topic in remote sensing science (Brown et al., 2006; Gallo et al., 2005; Meroni et al., 2013) 

when multi-location monitoring is conducted. There are two main approaches to evaluate and 

compare VIs derived from different sensors via linear regression (She et al., 2015; Teillet et al., 2006; 

Teillet & Ren, 2008): a direct approach where VIs are measured by sensors (Laliberte et al., 2011) 

and an indirect approach where VIs data are simulated by radiative transfer models (van Leeuwen et 

al., 2006). A major limitation of the direct regression approach is that is not transferable because it is 
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site-specific (Hoque & Phinn, 2018). On the contrary, the indirect approach permits to retrieve VIs 

data from radiative transfer models such as the PROSAIL model (Baret et al., 1992; Jacquemoud et 

al., 2009). PROSAIL has been used to assess the performances of different satellite sensors for 

multiple VIs (Verrelst, Camps-Valls, et al., 2015) but a similar application is currently lacking in 

UAV science. Regarding the yield predictions, it is, in many studies, theoretical, as it requires to fit 

the whole seasonal curve for deriving the peak of the time series of VIs. This renders impossible the 

yield prediction before having obtained the data of the whole seasonal time series. Furthermore, to 

date, few studies have focused on the estimation and prediction of perennial biomass crops phenotypic 

traits using remote sensing technologies from satellite or UAV (Hamada et al., 2021; Li et al., 2020; 

Wang et al., 2019) and only two on Miscanthus (Impollonia et al., 2022; Richter et al., 2016).  

In summary, the overall objectives of this study based on UAV remote sensing were: i) to estimate 

crop traits (light interception, plant height, green leaf biomass and standing biomass) for supporting 

breeding programs and for providing modelling parameters for Miscanthus, ii) to predict yield to 

obtain spatial and temporal information for improving the logistics biomass supply chain of 

Miscanthus, and iii) to explore the potential impact of the timeliness on the yield prediction, by 

evaluating the performance of the yield prediction model using peak derived from partial time series 

of VIs. To achieve these overarching objectives, UAV multispectral images and ground phenotypic 

data were collected at two locations within the same multi-environment trial: one in Italy and one in 

the UK.  These data were analysed using: i) the PROSAIL model to simulate canopy reflectance and 

to link VIs of two different common multispectral sensors, ii) random forest (RF) algorithm to 

estimate crop traits and to predict yield using the VIs and peak of VIs time series and iii) generalized 

additive model (GAM) to derive peak from complete and partial time series of VIs. 

3.2 Materials and methods 

3.2.1 Experimental design 

The field trials were conducted in two locations: PAC 1 located in San Bonico in the Italian province 

of Piacenza (NW Italy) (45°00′11.70′′ N, 9°42′35.39′′ E) and TWS 1 located in Trawscoed near 

Aberystwyth in Wales (UK) (52°24'59.8"N, 4°04'02.6"W) (Figure 3.1). These sites are two of the 

seven plot scale (PS) trials conducted within EU-BBI GRACE demo-project (Awty-Carroll et al., 

2022). In PAC 1 the climate is temperate with a mean annual precipitation of 792 mm, while the 

climate in TWS 1 is oceanic with a mean annual precipitation of 984 mm. The trials were established 

in April 2018 with 14 Miscanthus hybrids (Table 3.1) with n=4 replicates for a total of n= 56 plots. 

The trials were planted with eight novel intraspecific M. sinensis x M. sinensis hybrids (M. sin x M. 

https://www.grace-bbi.eu/
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sin), five novel interspecific hybrids M. sinensis x M. sacchariflorus (M. sin x M. sac) and   M. x 

giganteus as control genotype (for more details see Awty-Carroll et al. (2022)).  

 

 

Figure 3.1 Map of field experiments: PAC 1 is located in Piacenza (North-West Italy) and TWS 1 is located in 

Aberystwyth (Mid-West Wales). 

 

Table 3.1 Characteristics of the 14 Miscanthus hybrids considered in this study. 

Material Hybrid code Genotype Planting density 

Seed-based plugs GRC 1-8 M.sinensis x M. sinensis 3 plants/m2 

Rhizomes * GRC 9 M. x giganteus 1.5 plants/m2 

Seed-based plugs 
GRC 10 - 14 

(except GRC 12) 
M.sinensis x M. sacchariflorus 1.5 plants/m2 

Rhizomes * GRC 15 M.sinensis x M. sacchariflorus 1.5 plants/m2 

 

* Hybrids commercially available 
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3.2.2 Phenotypic and yield measurements 

Phenotypic measurements were taken from the emergence of the crop in spring 2020 until the winter 

harvest in the early months of 2021. This season will thereafter be referred to as the 2020 growing 

season. These phenotypic measurements were carried out in the two locations and on four out of the 

fourteen hybrids in the trial: GRC 3 (M. sin x M. sin), GRC 14 (seeded) and GRC 15 (clonal) (M. sin 

x M. sac) and GRC 9 (standard clonal M. x giganteus). The measurements of this study were carried 

during 3rd growing season. Five contiguous plants along a central row in each plot were used for 

monitoring along the growing season (see Awty-Carroll et al. (2022) for a detailed description). The 

following list of crop traits were measured along the growing season: plant height (cm) and light 

interception (%) were measured weekly; green leaf biomass (Mg DM ha-1) and standing biomass (Mg 

DM ha-1) were measured fortnightly. One hundred seventy-two and 145 data were collected for light 

interception, 240 and 204 for plant height, 232 and 316 for green leaf biomass, and 268 and 328 for 

standing biomass, in PAC 1 and TWS 1 respectively. Plant height was measured from the soil to the 

height of the last ligule of the tallest stem using a graduated pole until crop reached complete 

flowering or started to senesce in November. Light interception was measured with a lab-constructed 

1m “line ceptometer” with 10 photodiodes at 10 cm spacings generating an electric current which is 

converted with simple circuitry to a voltage linearly proportional to the light intensity. Light intensity 

was measured above the canopy and at the base of each of the five selected plants. Light interception 

measurements were carried out from emergence until full canopy closure (around 95% of light is 

intercepted by the crop canopy) on a weekly basis and later at a lower frequency. Standing 

aboveground biomass was estimated on a monthly basis, starting after emergence in 2020 until 

harvest in winter 2021 using the methods described in Magenau et al. (2022). In brief, 10 randomly 

sampled shoots per plot each fortnight (aka ‘serial cuts’) were related to the final quadrat yields at 

spring harvest and used to back calculate the seasonal dynamics of above ground biomass (Mg DM 

ha-1) from spring emergence until final harvest in the following spring. Each 10 shoot serial cuts were 

separated into green leaf, brown leaf, and stem fractions. The fresh weight measured in field, and the 

dry weight measured after oven drying to constant weight at 80ºC were used to calculate the mass 

and moisture contents of each fraction and were scaled to Mg DM ha-1. The crop phenological stages 

were estimated using the thermal time following the method proposed on M. x giganteus by Tejera et 

al. (2021). Thermal time was measured in growing degree days (GDD, °C Day, Equation 3.1) as: 

 𝐺𝐺𝐺𝐺𝐺𝐺 =  �𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  +  𝑇𝑇𝑚𝑚𝑖𝑖𝑛𝑛
2

� −  𝑇𝑇𝑏𝑏 Equation 3.1 
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where 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑚𝑚𝑖𝑖𝑛𝑛 are the daily highest and lowest temperatures measured by a weather station 

situated at each experimental site, and 𝑇𝑇𝑏𝑏 is a base growth temperature of 6°C (Farrell et al., 2006).  

Two main phenological stages were estimated: vegetative growth and senescence. The GDD 

accumulation started at plant emergence, and the accumulation of 1500 GDD was used as the 

threshold marking the difference between the vegetative growth and senescence. 

The final harvested yield in spring was measured for all the fourteen hybrids using a quadrat area of 

6.6 m2 (10 plants per plot planted at 1.5 plants m-2 (M. x giganteus and M. sin x M. sac) or 20 plants 

per plots at 3 plants m-2 (M. sin x M. sin)) and a cutting height of 10 cm. In each plot, the fresh weight 

of all plants in the quadrat was recorded and a subsample of approximately five stems per plot was 

used to determine the moisture content and calculate the yield in Mg DM ha-1.  Plants were harvested 

on February 2nd 2021 (Days of year (DOY): 33) at PAC 1 and on March 8th 2021 (DOY: 67) at TWS 

1. A full description of the harvest protocol as well as annual yield data from winter harvest used in 

this study is provided in Awty-Carroll et al. (2022). 

3.2.3 UAV multispectral data and vegetation indices 

Unmanned aerial vehicle (UAV) multispectral data acquisition flights were performed approximately 

fortnightly from 24/04/2020 to 01/02/2021 at the PAC 1 (25 flights) site and from 09/06/2020 to 

25/02/2021 at the TWS 1 (17 flights) site (Figure 3.2). Table 3.2. details the specifications of the 

UAVs and the multispectral cameras used at two sites. All flights were performed between 11 am and 

3 pm with flight altitude above ground level (AGL) fixed at 50 m and 40 m at PAC 1 and TWS 1, 

respectively. The forward and lateral overlap was set at 80% and at 75% of the images, respectively. 

Spectral panels and light sensors mounted on top of the UAVs were used for the radiometric 

calibration of the images. The radiometric calibration and orthomosaic generation were done using 

the Pix4D mapper (Pix4D, Switzerland). The 15 vegetation indices (VIs) were calculated as shown 

in Table 3.3 using the orthomosaic. The mean of the VIs was extracted for each plot using the 

polygons of the experimental designs that were drafted in AutoCAD (Autodesk, USA) and 

georeferenced with QGIS software (QGIS Development Team, 2021). 
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Figure 3.2 Seasonal calendar of UAV flights performed in the two locations. 

 

 

 

 

Table 3.2 Unmanned aerial vehicles (UAVs) and multispectral cameras used to perform flights in the two locations. 

Location UAV Camera Spectral bands 

PAC 1 DJI M210 RTK MicaSense RedEdge-Mx 

blue (475 nm centre, 32 nm FWHM), 

green (560 centre, 27 nm FWHM), 

red (668 nm centre, 14 nm FWHM), 

red edge (717 nm centre, 12 nm FWHM), 

near-infrared (840 nm centre, 57 nm FWHM) 

TWS 1 DJI M210 SlantRange 4P 

blue (470 nm centre, 100 nm FWHM), 

green (550 centre, 100 nm FWHM), 

red (650 nm centre, 40 nm FWHM), 

red edge (710 nm centre, 20 nm FWHM), 

near-infrared (850 nm centre, 100 nm FWHM) 
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Table 3.3 List of the vegetation indices evaluated in random forest models for crop traits estimation and for yield 

prediction of Miscanthus. 

VIs Equation Reference 

Datt1 
NIR− RedEdge

NIR + Red
 Datt, 1999 

EVI2 2.4
NIR − Red

1 + NIR + Red
 Miura et al., 2008 

GNDVI 
NIR− Green

NIR + Green
 Gitelson et al., 1996 

GOSAVI 
NIR− Green

NIR + Green +  0.16
 Sripada et al., 2006 

greenWDRVI 
0.1NIR− Green

0.1NIR + Green
+

1 − 0.1

1 +  0.1
 Gitelson, 2004 

MSAVI 
2NIR +  1 −  �(2NIR +  1)2 −  8(NIR −  Red)

2
 Qi et al., 1994 

MTVI1 1.2(1.2(NIR - Green) - 2.5(Red - Green)) Haboudane et al., 2004 

MTVI2 
1.5

1.2(NIR −  Green)  −  2.5(Red −  Green)�(2NIR +  1)2 −  6NIR − 5√Red−  0.5  

 
Haboudane et al., 2004 

NDRE 
NIR− RedEdge

NIR + RedEdge
 Gitelson & Merzlyak, 1994 

NDVI 
NIR− Red

NIR + Red
 Rouse et al., 1973 

OSAVI (1 +  0.16)
NIR− Red

NIR + Red +  0.16
 Rondeaux et al., 1996 

OSAVI2 (1 +  0.16)
NIR− RedEdge

NIR + RedEdge +  0.16
 Wu et al., 2008 

rededgeWDRVI 
0.1NIR− RedEdge

0.1NIR + RedEdge
+

1 − 0.1

1 +  0.1
 Gitelson, 2004 

SAVI (1 +  0.5)
NIR − Red

NIR + Red +  0.5
 Huete, 1988 

WDRVI 
0.1NIR− Red

0.1NIR + Red
+

1 − 0.1

1 +  0.1
 Gitelson, 2004 

 

3.2.4 Using the PROSAIL model to link VIs from different multispectral sensors  

The PROSAIL model was used to simulate crop spectral signatures to link VIs (Table 3.3) calculated 

from the two different multispectral sensors used in this study (Table 3.2). The PROSAIL can 

simulate the canopy reflectance, between 400 and 2500 nm, by combining the PROSPECT and SAIL 

models. The PROSPECT model simulates the optical properties of the leaves using 4 input 

parameters: leaf structure parameter (N), leaf chlorophyll content (LCC), relative leaf equivalent 

water thickness (Cwr) and leaf dry matter content (Cm). The SAIL model simulates the bidirectional 

reflectance of a canopy using 6 input parameters: leaf area index (LAI), leaf inclination distribution 

(LIDF), hotspot parameter (hot), solar zenith angle (tts), observer zenith angle (tto) and relative 

azimuth angle (psi). Canopy and leaf parameters for Miscanthus were retrieved from available data 

on literature (Rusinowski et al., 2019; Urrego et al., 2021). The hsdar R package (Lehnert et al., 

2019) was used to simulate the canopy reflectance of the PROSAIL model using the function 

PROSAIL which uses the FORTRAN code of the PROSAIL model (Version 5B). The look-up table 
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(LUT) generated included 430,080 parameter combinations following the min-max ranges of input 

parameters summarized in Table 3.4.  

 

Table 3.4 Ranges of input parameters for the PROSAIL model for the generation of the LUT. 

Parameter Abbreviation Unit Values 

Leaf 

Structure parameter N Unitless 1 – 2 (step = 1) 

Chlorophyll content LCC µg cm-2 10 – 80 (step = 10) 

Relative equivalent water thickness Cwr % 20 – 80 (step = 20) 

Dry matter content Cm g cm-2 0.01 – 0.025 (step = 0.005) 

Canopy 

Leaf area index LAI m2 m-2 1 – 8 (step = 1) 

Leaf inclination distribution LIDF  Spherical 

Hotspot parameter hot m m-1 0.05 – 0.45 (step = 0.2) 

Solar zenith angle tts deg 20 – 80 (step = 10) 

Observer zenith angle tto deg 5 – 10 (step = 5) 

Relative azimuth angle psi deg 180 – 220 (step = 10) 

 

Regarding the parameter combinations used for LUT generation, all parameter combinations were 

considered in the analysis as novel Miscanthus hybrids were evaluated (no information on literature) 

and the crop monitoring was performed throughout the whole growing season (vegetative growth and 

senescence). The spectral reflectance simulated were resampled based on UAV sensors 

characteristics (Table 3.2) and the 15 VIs used in this study were calculated. For each VI, a linear 

regression was realised to link the VI values calculated from the two multispectral sensors. Linear 

regressions were performed using the VIs and not the spectral bands, in order to i) evaluate the 

different sensitivity of the VIs to sensor characteristics and ii) identify VIs that need a linking 

procedure and those that do not. The final database of VIs was built by linking SlantRange VIs data 

toward MicaSense one.  

3.2.5 Time series of VIs and peak derivation 

The 15 VIs calculated from UAV multispectral images of the two sites and linked using the linear 

regression derived by the PROSAIL model were smoothed using a generalized additive model 

(GAM) to generate daily time series of the VIs. The GAM is a non-parametric regression model 

which allows non-linear fitting of the variables. GAM models were fitted in R package mgcv (Wood, 

2017). GAM fitting of VIs allows to remove the outliers and regularize the time series (Antonucci et 

al., 2021; Impollonia et al., 2022; Nolè et al., 2018). The time series of VIs for each plot were fitted 

against the modified days of the year (DOY). The modified DOY was used to overcome the problem 

of having non-sequential DOY throughout the whole growing season, as this last overlaps two 

different years. Modified DOY were calculated as conventional DOY for the first year of the growing 

season (2020) and as DOY + 365 starting from the 1st of January for the year 2021. 
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Daily time series of the VIs were used to estimate the crop traits and to derive peak descriptor for 

each VI to predict yield. The peak descriptor is defined as the maximum value recorded in the time 

series of a VI. Two types of VIs time series were evaluated in the peak derivation: i) complete VIs 

time series, where the GAM models were fitted using all the VIs data acquired throughout the whole 

growing season, and ii) partial VIs time series, where the GAM models were fitted with fixed VIs 

data acquired in the first seven UAV flights (175 DOY in PAC 1 and 266 DOY in TWS 1) and adding 

the subsequent single UAV flight until the end of the season.  The peak derived from complete time 

series of VIs were used for the yield prediction modelling and those from partial time series of VIs 

were used to analyse the variation of peak values and the model operability for yield prediction during 

Miscanthus growing season.  

3.2.6 Machine learning modelling and variable importance 

The random forest (RF) algorithm was used to estimate the crop traits (section 3.2.2) and to predict 

the yield of Miscanthus hybrids. The RF models were created using the caret R package (Kuhn, 

2008). Three steps in RF modelling were adopted: firstly, RF models were created using the 15 VIs 

of the 4 Miscanthus hybrids (see section 3.2.2) and phenological stages (encoded as 0 and 1 for the 

stages of vegetative growth and senescence, respectively) for traits estimation, and the peak derived 

from complete time series of 15 VIs of the 14 Miscanthus hybrids for yield prediction; secondly, the 

importance of variables in RF models was calculated by dropout loss of RMSE and the variables with 

a median of RMSE loss greater than 0 were selected; thirdly, the RF models were created using only 

the selected variables. The optimal size of the variable subset (“mtry”) for each model was obtained 

by grid-searching method using repeated k-fold cross-validation (ten-fold cross validation repeated 5 

times). The training dataset was created using a stratified random sampling method (Han et al., 2019): 

data from both locations and genotypes were split into 2/3 of the dataset for training and 1/3 for testing 

based on data distribution. The variable importance was calculated by dropout loss of RMSE (i.e.  

increase of prediction RMSE, Woźniak et al., 2021) using the DALEX package (Biecek, 2018). To 

show the uncertainty of importance estimation, the variable importance was calculated for 10 

permutations (Woźniak et al., 2021). The RF models’ performances were evaluated calculating the 

root mean square error (RMSE, Equation 3.2) and the normalized root mean square error (NRMSE, 

Equation 3.3) as follows: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛𝑖𝑖=1 𝑛𝑛  Equation 3.2 
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𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (%) =  

�∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛𝑖𝑖=1 𝑛𝑛𝑦𝑦� 100 
Equation 3.3 

 

where 𝑛𝑛 is the sample number, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the estimated and measured value of each trait, and 𝑦𝑦� is 

the mean of the measured value. RMSE and NRMSE metrics were also used to compare the 

performance of the yield prediction model using test datasets with the peak derived from complete 

and partial time series of VIs. 

3.3 Results 

3.3.1 PROSAIL model for linking VIs from different multispectral sensors 

The canopy reflectance simulated by PROSAIL for the two multispectral sensors were used to link, 

via linear regression and on two locations, the vegetation indices (VIs). The outputs of the linear 

regressions for each VI calculated from PROSAIL model between the two sensors (y - the MicaSense 

VIs and x - the SlantRange VIs) are reported in Figure 3.3. EVI2, MSAVI and SAVI were the three 

VIs with the slope values closest to 1 and intercept values closest to 0 (Figure 3.3). The slope values 

of these VIs were 0.99 for EVI2, 0.99 for MSAVI and 0. 97 for SAVI, while the intercept was 

respectively 0.016 for EVI2, 0.02 for MSAVI and 0.025 for SAVI. OSAVI had a similar relation 

(slope: 0.91) but showed higher variability at VI values lower than 0.6. Datt1, NDRE and OSAVI2 

had a relationship between the two sensors with a slope close to 1 but they showed a different intercept 

with SlantRange sensor, underestimating the VI compared to MicaSense (Figure 3.3). A slope close 

to 1 associated with a high variability for the whole range of VI values was observed for MTVI1 

(slope: 1) and MTVI2 (0.97). GNDVI, GOSAVI, greenWDRVI and NDVI showed instead the 

highest differences between the two sensors at the lowest values of VI. On the contrary, 

rededgeWDRVI showed the highest differences at high VI values.  
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Figure 3.3 Linear regression between VIs MicaSense and SlantRange derived from the PROSAIL model. The 1:1 

relationship is represented by a dashed line. 

 

3.3.2 Importance of variables in machine learning models 

Importance of random forest (RF) models’ variables for crop trait estimations and for yield prediction 

are shown in Figure 3.4. The analysis of variables' importance for the RF models was evaluated by 
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drop-out loss of RMSE for each variable compared to the full model (Biecek, 2018; Woźniak et al., 

2021). Phenological stage (“Stage”) was the most important variable for estimating plant height, 

green leaf biomass and standing biomass (Figure 3.4). For the crop traits estimation, the two most 

important VIs were NDVI and MTVI1 for light interception, rededgeWDRVI and NDVI for plant 

height, and greenWDRVI and GNDVI for green leaf biomass and standing biomass. For yield 

prediction, the most important VIs (with a median of RMSE loss greater than 0) of peak descriptor 

were greenWDRVI, NDVI, WDRVI, GNDVI and MTVI2 (Figure 3.4). 

 

 

Figure 3.4 Importance of the RF models variables for crop trait estimations and for yield prediction, expressed as drop-

out loss of model performance (RMSE) for each variable related to the drop-out loss of the full model (dotted line). *The 

RMSE values are in (%), (cm), (Mg DM ha-1), (Mg DM ha-1) and (Mg DM ha-1) respectively for the light interception, 

plant height, green leaf biomass, standing biomass and yield. 
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3.3.3 Machine learning model for crop traits estimation 

Crop traits distribution of contrasting Miscanthus hybrids measured at two locations is shown in 

Figure 3.5. The frequency distribution of the traits (light interception, plant height, green leaf biomass 

and standing biomass), which values were used for training and testing the models, showed that lower 

values were recorded in TWS 1 than in PAC 1 (Figure 3.5). For light interception, the range was from 

5.2 % to 100 % in TWS 1 and PAC 1, and the mean was 58 % in TWS 1 and 81.5 % in PAC 1. The 

mean of plant height was 211 cm in PAC 1 and 147 cm in TWS 1, with the range from 28 cm to 344 

cm and from 22 cm to 280 cm in PAC 1 and TWS 1, respectively. The range and the mean of green 

leaf biomass were from 0.14 Mg DM ha-1 to 14.5 Mg DM ha-1 and 5 Mg DM ha-1 in PAC 1 and from 

0.05 Mg DM ha-1 to 6.3 Mg DM ha-1 and 1.5 Mg DM ha-1 in TWS 1. For standing biomass, the range 

was from 0.5 Mg DM ha-1 to 46.4 Mg DM ha-1 in PAC 1 and from 0.5 Mg DM ha-1 to 21.1 Mg DM 

ha-1 in TWS 1, and the mean was 8 Mg DM ha-1 in TWS 1 and 18.9 Mg DM ha-1 in PAC 1. 

 

 

Figure 3.5 Frequency distribution of Miscanthus traits at the two locations PAC 1 and TWS 1: (a) light interception (%), 

(b) plant height (cm), (c) green leaf biomass (Mg DM ha-1) and (d) standing biomass (Mg DM ha-1). 
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Overall, the RF model estimated phenotypic traits with good model performances (Figure 3.6 and 

Figure 3.7). Among the crop traits, light interception was estimated with the greatest accuracy 

(NRMSE of 10.9 %, Figure 3.6). High model accuracy was also achieved for the estimation of plant 

height (21.8 NRMSE %), while the lowest model accuracies were observed for the green leaf biomass 

and standing biomass (42.2 % and 45.3 % of NRMSE, respectively Figure 3.6). For these last 

parameters, the RF model showed good accuracy from low to intermediate values, while above values 

of 5 Mg DM ha-1 of green leaf biomass and 20 Mg DM ha-1 of standing biomass the model 

performances dropped. The NRMSE performance metrics for each location and hybrid are reported 

in Figure 3.7. Generally, no relevant differences were observed between the two locations (Figure 

3.7). In PAC 1, the GRC 3 hybrid showed the worst performance for green leaf biomass, for standing 

biomass and for plant height, while in TWS 1, GRC 14 hybrid showed the worst performance for all 

the crop traits considered, except for plant height. 

 

 

Figure 3.6 Estimated vs measured crop traits on the ground of four Miscanthus hybrids growth at the PAC 1 and TWS 

1: (a) light interception (%), (b) plant height (cm), (c) green leaf biomass (Mg DM ha-1) and (d) standing biomass (Mg 

DM ha-1). 
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Figure 3.7 NRMSE values of the RF models obtained for each crop trait assessed in four hybrids grown at the two 

locations PAC 1 and TWS 1. 

 

3.3.4 Machine learning model for yield prediction  

The frequency distribution of yield measured for the 14 Miscanthus hybrids in PAC 1 and TWS 1 is 

shown in Figure 3.8. On average, the yield of Miscanthus was higher in PAC 1 than TWS 1. In PAC 

1, the highest yield was recorded by M. sin x M. sac (mean of 18.3 Mg DM ha-1). M. sin x M. sin 

productivity averaged 11.3 Mg DM ha-1, while M. giganteus was the less productive (mean of 9.6 Mg 

DM ha-1). In TWS 1, the highest yield was recorded by M. sin x M. sin (mean of 9.4 Mg DM ha-1). 

M. sin x M. sac productivity averaged 8.2 Mg DM ha-1 while M. giganteus was the less productive 

(mean of 6.6 Mg DM ha-1). The RF model, trained and tested with the yield values reported in Figure 

3.8, enabled a reliable estimation of Miscanthus yield for all hybrids using the peak derived from 

complete time series of VIs (Figure 3.9). The RF model obtained a RMSE value of 2.3 Mg DM ha-1 

and NRMSE value of 19.7 % (Figure 3.9a). In PAC 1, M. sin x M. sac showed the lowest NRMSE 

value while M. sin x M. sin showed the highest NRMSE value. On the contrary, in TWS 1, M. sin x 

M. sin showed the lowest NRMSE value while M. sin x M. sac showed the highest NRMSE value 

(Figure 3.9b). The days of the year (DOY) of the peak of the VIs (greenWDRVI, NDVI, WDRVI, 

GNDVI and MTVI2) are reported in Figure 3.10. On average, the VIs reached the peak earlier in 

PAC 1 (172 DOY – June 20th) than in TWS 1 (DOY 232– August 19th). In PAC 1, all hybrids reached 

the peak at the same time while in TWS 1 all M. sin x M. sin hybrids were the earliest to reach the 
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peak (228 DOY - August 15th), while M. sin x M. sac hybrids and M. x giganteus reached the peak 

along a wide timespan ranging from end-September until mid-November (Figure 3.10). 

 

 

Figure 3.8 Frequency distribution of yield (Mg DM ha-1) for the different Miscanthus hybrids at the two locations PAC 

1 and TWS 1. 

 

 

Figure 3.9 (a) Predicted vs measured yield and (b) NRMSE of the RF model for yield prediction of the different 

Miscanthus hybrids at two locations PAC 1 and TWS 1. 
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Figure 3.10 Boxplot of the day of the year (DOY) of the peak derived from complete time series of the greenWDRVI, 

NDVI, WDRVI, GNDVI and MTVI2, for the different Miscanthus hybrids at two locations PAC 1 and TWS 1. 

 

3.3.5 Time series of VIs and yield prediction analysis  

The complete time series of the 5 VIs selected (yield in Figure 3.4) for yield prediction are reported 

in Figure 3.11a for PAC 1 and Figure 3.12a for TWS 1. In PAC 1, all VIs values recorded throughout 

the growth of Miscanthus were the highest for M. sin x M. sac and the lowest for M. giganteus (Figure 

3.11a), following the same order of the mean yield measured in the field (Figure 3.8). In TWS 1, 

similar time series of all VIs were recorded for the M. sin x M. sac and M. giganteus (Figure 3.12a). 

In particular, the peaks of the M. sin x M. sac and M. giganteus were reached later than M. sin x M. 

sin as shown in Figure 3.10. The variation throughout the season of the peak derived by fitting the 

VIs via generalized additive model (GAM) are displayed in Figure 3.11b for PAC 1 and Figure 3.12b 

for TWS 1. In PAC 1, the differences between the value of the peak derived from the complete time 
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series of VIs and the value of the peak derived from the partial time series of VIs is lowest after 302 

modified days of the year (DOY) of the UAV flight (end-October). Before this date, the peaks 

differences are lower for M. sin x M. sin than M. sin x M. sac and M. giganteus (Figure 3.11b). In 

TWS 1, the difference between the value of the peak derived from the complete time series of VIs 

and the value of the peak derived from the partial time series of VIs is lowest after 331 modified DOY 

of the UAV flight (end-November). As for PAC 1, the peaks differences are lower for M. sin x M. sin 

than M. giganteus and M. sin x M. sac (Figure 3.12b) in TWS 1 before 331 modified DOY. The 

timeline of the performance of the RF model tested with the VIs peak from partial time series is 

reported in Figure 3.13. In PAC 1, the NRMSE decreased until 302 modified DOY for M. giganteus 

and M. sin x M. sac while for M. sin x M. sin, it remained stable for all UAV flights performed from 

175 modified DOY and onward. In TWS 1, no relevant differences in NRMSE were observed 

between the UAV flights performed from 266 modified DOY and onward. 
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Figure 3.11 (a) Time series of the five VIs (GNDVI, greenWDRVI, MTVI2, NDVI, WDRVI) fitted via generalized 

additive model (GAM) throughout the whole growing season of Miscanthus in PAC 1. Modified day of the year (DOY) 

were calculated by adding 365 to the DOY of the corresponding year from January on. (b) Variation of the peak of the 

VIs derived from complete time series of the VIs as compared to the peak of the VIs derived from partial time series of 

the VIs. In the x-axis are reported the modified DOY of the UAV flights performed during the season in PAC 1. In the y-

axis are reported the peak differences between the peak derived to the end of the season in PAC 1 (397 modified DOY) 

and the peak derived from partial time series fitted until the modified DOY of the UAV flight. 
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Figure 3.12 (a) Time series of the five VIs (GNDVI, greenWDRVI, MTVI2, NDVI, WDRVI) fitted via generalized 

additive model (GAM) throughout the whole growing season of Miscanthus in TWS 1. Modified day of the year (DOY) 

were calculated by adding 365 to the DOY of the corresponding year from January on. (b) Variation of the peak of the 

VIs derived from complete time series of the VIs as compared to the peak of the VIs derived from partial time series of 

the VIs. In the x-axis are reported the modified DOY of the UAV flights performed during the season in TWS 1. In the 

y-axis are reported the peak differences between the peak derived to the end of the season in TWS 1 (421 modified DOY) 

and the peak derived from partial time series fitted until the modified DOY of the UAV flight. 
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Figure 3.13 NRMSE values of the RF model for yield prediction, trained with the peak of the VIs derived from complete 

time series and tested with the peak of the VIs derived from partial time series fitted until the modified DOY of the UAV 

flight, at the two locations PAC 1 and TWS 1.  

 

3.4 Discussion 

The use of UAV-based remote sensing provides a great potential for high-throughput phenotyping 

(HTP) at plot scale with applications in both breeding and in estimating the quality and quantity of 

the biomass for optimising downstream management of biomass fluxes. In this study, vegetation 

indices (VIs) and their peak were derived from unmanned aerial vehicles (UAVs) mounted 

multispectral sensors, to estimate crop traits (light interception, plant height, green leaf biomass and 

standing biomass) and to predict the final harvestable yield of novel Miscanthus hybrids and common 

M. x giganteus grown at two sites (Italy and UK).  

3.4.1 The importance of linking VIs for multi-sensor interoperability 

Linking VIs of multi-sensor is relevant for remote sensing crop monitoring (Meroni et al., 2013), 

particularly when the objective is to build models to estimate crop traits or to predict yield, and when 

sensors with different spectral characteristics are used. Indeed, the models might not reach the same 
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accuracy if the VIs are calculated with sensors with different spectral band characteristics. The 

spectral signatures simulated from the PROSAIL model were used in this study to link VIs calculated 

from two common multispectral cameras (MicaSense RedEdge-MX and SlantRange 4P). Ideally, the 

VIs from any sensor can be then linked against the VIs of a selected reference sensor. This linking 

approach is commonly adopted for VIs obtained from different satellites (van Leeuwen et al., 2006) 

but to our knowledge, this is the first time that such an approach is applied to UAV multispectral 

sensors. PROSAIL model was used to simulate the canopy reflectance based on the value of specific 

Miscanthus traits, such as LAI, chlorophyll content, dry matter content, relative equivalent water 

thickness, leaf inclination distribution and two site-specific info: solar zenith angle and relative 

azimuth angle. This approach was applied to the values of 15 VIs. EVI2, MSAVI and SAVI were the 

three VIs with the closest 1:1 relation, which indicates that these VIs have a very low sensitivity to 

the spectral characteristics of the two sensors used in the present work. Similar results with no need 

for correction for the same VIs were reported by Li et al. (2013) that compared ETM+ and OLI 

satellite imageries. However, the other VIs evaluated in this study (Datt1, GNDVI, GOSAVI, 

greenWDRVI, MTVI1, MTVI2, NDRE, NDVI, OSAVI, OSAVI2, rededgeWDRVI and WDRVI) 

showed a higher sensitivity to sensor characteristics, underlining the importance of linking VIs for 

multi-sensor interoperability. In particular, the VIs based on the green and red-edge bands showed a 

higher variation than the VIs based on the red band at all ranges of values. These differences are 

explained by the differences in the spectral characteristics of MicaSense and SlantRange in the green 

and red-edge bands. In particular, the SlantRange sensor has a broader green FWHM (100 nm) and a 

different central wavelength (710 nm) of the red edge compared to the MicaSense sensor (green 

FWHM: 27 nm and red edge central wavelength: 717 nm). This difference was already reported to 

cause considerable signal differences in other studies (Cui & Kerekes, 2018; Rengarajan & Schott, 

2018).  

This study highlighted the importance of linking outputs from different multispectral sensors to 

increase interoperability in remote sensing. Kim et al. (2010) and Villaescusa-Nadal et al. (2019) 

reported that the use of linear regression equations to link multi-sensor contributes to significantly 

correct (up to 50%) the effects of different spectral characteristics on VIs. However, it would be 

interesting to validate this procedure by flying simultaneously on the same field with two UAV 

sensors, comparing the values of the VIs with and without the linking procedure, in order to evaluate 

the improvement in terms of VIs compatibility and multi-sensor interoperability. In fact, even if the 

spectral characteristics of the multispectral sensor are the factor that influences the most the 

compatibility of the VIs of different sensors (Théau et al., 2010), other factors cause differences of 

VIs such as the atmospheric conditions during acquisition (Psomiadis et al., 2017). In the UAV 
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images acquisitions, the changing light and meteorological conditions during the flights can affect 

the quality of the spectral data ( Guo et al., 2019). Therefore, this procedure is limited by other factors 

that cannot be considered by applying a simulated regression coefficient. However, using equations 

able to link VIs derived by multiple multispectral sensors can reduce differences in VIs improving 

crop monitoring and modelling for estimation of crop traits and prediction of yield. 

3.4.2 Estimating Miscanthus traits with machine learning 

This study estimated Miscanthus traits using the random forest (RF) machine learning algorithm. The 

RF model was trained with the data collected on three novel seed-based Miscanthus hybrids and the 

common rhizome-based genotype M. x giganteus, at two contrasting locations (North-West Italy and 

Mid-West Wales). The RF algorithm, using 15 common VIs, successfully estimated crop traits, 

solving the non-linear responses between VIs and crop traits observed by Li et al. (2020) for other 

perennial crops. The estimation of the crop traits from time series of VIs acquired by UAV-based 

remote sensing can generate more data useful to calibrate existing Miscanthus crop models and re-

fine these models for novel Miscanthus hybrids in contrasting environments. The crop trait estimated 

with the greatest accuracy was light interception that showed a RMSE of 8.4 %, the accuracy being 

especially good at high values of light interception (Figure 3.6). This result is in agreement with 

Guillen-Climent et al. (2014) who found that the fraction of intercepted photosynthetically active 

radiation (fIPAR) was successfully estimated by a ML algorithm. Upreti et al. (2019) found similar 

values of NRMSE (12.06 %) using the RF tree bagger approach for estimating the fraction of 

absorbed photosynthetically active radiation (fAPAR) of durum wheat. Good model accuracy was 

also achieved for plant height estimation (RMSE = 42 cm and NRMSE = 21.8 %, Figure 3.6). A 

similar RMSE value (41 cm) was found by Han et al. (2019) for plant height estimation of maize 

using the crop surface model, and by Tao et al. (2020) (NRMSE = 21.2 %) in the estimation of plant 

height of winter wheat using UAV hyperspectral images. The worst model accuracy was found for 

the green leaf biomass and standing biomass with 1.3 Mg DM ha-1 and 5.8 Mg DM ha-1 of RMSE, 

respectively (Figure 3.6). However, for these parameters, the model showed good accuracy from low 

to intermediate values, while above values of 5 Mg DM ha-1 of green leaf biomass and 20 Mg DM 

ha-1 of standing biomass the model performed dropped. The model could be affected by errors in the 

estimation in these intervals due to fewer data used to train the model (Shah et al., 2019), in fact, most 

of them were collected in PAC 1 (Figure 3.5). The different levels of accuracy of the models in 

estimating light interception and plant height compared to green leaf biomass and standing biomass 

could be also related to the period in which measurements were taken and to the response of VIs 

during senescence. Field measurements of light interception and plant height were carried out in each 
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environment from emergence until they peaked, which explains their good model accuracy.  

Estimation of crop traits with data coming from single UAV flights across the growing seasons is 

particularly affected after biomass reaches its maximum value in autumn. After biomass peak, with 

the start of the senescence period, the values of VIs start to decrease (Tillack et al., 2014) while, as 

shown by Awty-Carroll et al. (2022) and Magenau et al. (2022), Miscanthus green leaf biomass and 

standing biomass values remained stable or slightly decreased during this period. The difference of 

rate of decrease between VIs and crop traits during senescence is a key aspect to consider in remote 

sensing estimation of crop traits. The importance of the senescence stage in the crop traits estimation 

is confirmed by the results on the variables’ importance (Figure 3.4). Indeed, the phenological 

variable “Stage” was the most important variable in the estimation of plant height, green leaf biomass 

and standing biomass.  

The plant height of the GRC 3 (a M. sin x M. sin planted at high density) were poorly estimated, and 

this could be due to its canopy architecture and flowering time (Awty-Carroll et al., 2022). M. sin x 

M. sin hybrid has many distinguishable stems flowering (where plant height is measured) but leaves 

are particularly curved and attached along the stem at a lower height than M. sin x M. sac. In addition, 

this genotype was transplanted at higher densities (3 plants m-2) and flowered earlier (end of August) 

compared to other genotypes that flowered in early autumn (Magenau et al., 2022).  This more 

“prostrate” canopy architecture (with a higher stem segment between inflorescences and bent leaves) 

introduced noise in the plant height estimation from UAVs (Volpato et al., 2021) since most of the 

reflectance comes from bent leaf mass. This noise caused by changes in plant architecture and the 

onset of flower can be seen in the NRMSE values of the RF models at the PAC 1 site (Figure 3.7). In 

fact, the earlier a genotype with prostrate architecture flowers, the worse is the estimation of plant 

height and biomass from UAV. 

3.4.3 Yield prediction using machine learning and peak of VIs 

The random forest (RF) trained with the peak derived from complete time series of five VIs acquired 

by UAVs was able to predict the yield of the 14 Miscanthus hybrids. The RF model accurately 

predicted the yield with 2.3 Mg DM ha-1 of RMSE and 19.7 % NRMSE (Figure 3.9a). The peak of 

the five VIs used for yield prediction were selected by dropout loss of RMSE and the most important 

ones were the peak of the greenWDRVI, NDVI, WDRVI, GNDVI and MTVI2 (Figure 3.4). The peak 

for Miscanthus hybrids occurs on average in mid-summer and early autumn in southern/warm (Italy) 

and northern/cold (UK) locations, respectively. The importance of the peak as land surface phenology 

(LSP) descriptors for yield prediction was already reported by Prasad et al. (2021), who found that 

peak had the highest correlation with cotton yield prediction compared to other LSP descriptors. 
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Similar results were reported by Montazeaud et al. (2016) who found a high correlation between the 

peak of NDVI and the yield, and by Liu et al. (2019), who found that the EVI2 peak was a good 

predictor of grain yield. Among the VIs used in the RF model, the peak of the VIs based on the green 

band as GNDVI and greenWDRVI (Figure 3.4) were the most important variables for predicting not 

only Miscanthus yield at harvest but also to estimate standing biomass and green leaf biomass during 

the growing season (Figure 3.4). Similar results for the GNDVI were found in switchgrass and other 

warm-season perennial grasses (Hamada et al., 2021). In order to assess the capability of the model 

to predict the yield months before harvest, in this study, a timeline of the performance of the RF 

model was calculated using the peak derived from partial time series of VIs. Given the good accuracy 

achieved by the RF model (Figure 3.13), the results showed that yield can be predicted some months 

before harvest as already reported for switchgrass (Hamada et al., 2021), both in Italy and in the UK, 

using multispectral images acquired from multiple UAV flights. . In the UK, the RF model accurately 

predicted the yield five months before harvest for all Miscanthus hybrids. In Italy, the yield of the M. 

sin x M. sin hybrids can be predicted with good accuracy seven months before harvest while M. 

giganteus and M. sin x M. sac hybrids required more time, as a good accuracy was obtained 3-4 

months before harvest, implying to perform UAV multispectral image acquisition of Miscanthus up 

to end-October. This model operability, intended as a capability of the model to accurately predict 

the yield some months before the harvest, is extremely relevant for improving the logistics of biomass 

supply chain of Miscanthus and for supporting the improvement of crop modelling with remote 

sensing data.  

3.5 Conclusion 

This study demonstrated that vegetation indices (VIs) derived from unmanned aerial vehicle (UAV) 

multispectral images acquired in Italy and UK can be successfully used in random forest (RF) 

machine learning (ML) algorithm to estimate the light interception, plant height, green leaf biomass 

and standing biomass, and to predict the yield of novel Miscanthus hybrids using the peak derived 

from VIs time series. This study evaluated the timeline of the performance of the model using peak 

derived from partial VIs time series and the RF model showed a good capability to predict the yield 

months before the harvest both in Italy and in the UK. High-throughput phenotyping and yield 

prediction based on ML algorithms and on UAV remote sensing can improve the logistics of biomass 

supply chain, for supporting breeding programs, and for improving crop modelling of novel 

Miscanthus hybrids.  UAV platforms are suitable tools for HTP applications, as they enable the 

monitoring of small plots or field scale trials with numerous genotypes, due to their ability to capture 

high-resolution images. However, the satellite platforms are more suited for yield prediction, as they 
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can collect data of many fields simultaneously and can develop applications to predict commercial 

yield at regional and national scales.  In addition, this study reported for the first time a methodology 

to overcome the issue of multi-sensor interoperability among UAV multispectral sensors. The use of 

linking equations derived from the PROSAIL model proved to be a powerful tool to link VIs from 

multi-sensor with different spectral characteristics. Although this procedure is relevant for the upscale 

of models from experimental plots to field by linking the UAV with satellites sensor characteristics, 

it is limited because it only considers the spectral sensor characteristics and no other factors such as 

light and meteorological conditions during the flights, which may affect the quality of the spectral 

data, and which cannot be considered by applying a simulated regression coefficient. 
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Moisture content estimation and senescence phenotyping of novel 

Miscanthus hybrids combining UAV based remote sensing and machine 

learning 

 

Abstract 

Miscanthus is a leading perennial biomass crop that can produce high yields on marginal lands. 

Moisture content is a highly relevant biomass quality trait with multiple impacts on efficiencies of 

harvest, transport and storage. The dynamics of moisture content during senescence and overwinter 

ripening are determined by genotype x environment interactions. In this chapter, unmanned aerial 

vehicle (UAV) based remote sensing was used for high-throughput phenotyping (HTP) of the 

moisture content dynamics during autumn and winter senescence of 14 contrasting hybrid types 

(progeny of M. sinensis x M. sinensis (M. sin x M. sin, 8 types) and M. sinensis x M. sacchariflorus 

(M. sin x M. sac, 6 types)). The time series of moisture content was estimated using machine learning 

(ML) models and a range of vegetation indices (VIs) derived from UAV based remote sensing. The 

most important VIs for moisture content estimation were selected by the recursive feature elimination 

(RFE) algorithm and were BNDVI, GDVI and PSRI. The ML model transferability was high only 

when the moisture content was above 30%. The best ML model accuracy was achieved by combining 

VIs and categorical variables (5.6% of RMSE). This model was used for phenotyping senescence 

dynamics and identifying the stay-green (SG) trait of Miscanthus hybrids using the generalized 

additive model (GAM). Combining ML and GAM modelling, applied to time series of moisture 

content values estimated from VIs derived from multiple UAV flights, proved to be a powerful tool 

for HTP. 

 

Keywords: Miscanthus, moisture content, remote sensing, UAV, multispectral, machine learning, 

transferability, senescence, GAM, high-throughput phenotyping.  
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4.1 Introduction 

Miscanthus is a promising perennial crop that can achieve high biomass production on marginal lands 

(Amaducci et al., 2017; Pancaldi & Trindade, 2020; Shepherd et al., 2020; van der Cruijsen et al., 

2021). Due to its perennial nature, Miscanthus has a limited input requirement and is cultivated under 

no tillage regime leading to multiple ecosystem services provision (Agostini et al., 2021; Ferrarini et 

al., 2021; Ferrarini et al., 2017; Martani et al., 2021). Most of the research on Miscanthus has been 

conducted on Miscanthus x giganteus (Heaton et al., 2010), which is a naturally occurring sterile 

triploid hybrid of Miscanthus sacchariflorus (M. sac) and Miscanthus sinensis (M. sin) (Hodkinson 

et al., 2002). Novel Miscanthus hybrids (Clifton-Brown, Harfouche, et al.,  2019; Clifton‐Brown, 

Schwarz, et al., 2019; Hastings et al., 2017) have been recently obtained from several breeding 

programs (Clifton‐Brown, Schwarz, et al., 2019). In Europe, rhizome- and seed-based Miscanthus 

hybrids are available at a technology readiness levels that can enable the plantation of thousands of 

hectares per year (Clifton‐Brown, Harfouche, et al., 2019). These novel Miscanthus hybrids are being 

tested in multiple environments within the EU-BBI project GRACE. 

Plant senescence is a key trait for perennial plants as it limits biomass yield, modifies moisture content 

and affects nutrient translocation (Boersma et al., 2015; Jensen et al., 2017; Malinowska et al., 2017; 

Sarath et al., 2014; Yang & Udvardi, 2018). Moisture content at harvest is the most important biomass 

quality trait (Robson et al., 2013; Styks et al., 2020). Monitoring the dynamics of crop senescence, 

and moisture content can support the choice of the optimal harvest time that can improve biomass 

quality and logistics biomass supply chain. Lewandowski et al. (2016) found that moisture content 

of different genotypes can vary due to morphological differences and senescence patterns but it is 

primarily determined by harvest date. Several studies have shown that late senescence (stay green - 

SG) maximises biomass yield (Clifton‐Brown et al., 2001), while early senescence increases biomass 

quality (Clifton-Brown & Lewandowski, 2002). SG is determined by a complex physiological control 

(e.g. chlorophyll efficiency, nitrogen contents, nutrient remobilization and source-sink balance) 

(Munaiz et al., 2020; Thomas & Howarth, 2000) and traditional phenotyping methods for evaluating 

SG and delayed senescence are time-consuming (Furbank & Tester, 2011). Non-destructive methods 

are based on greenness visual score (Bogard et al., 2011) and SPAD measurements (Lopes & 

Reynolds, 2012; Xie et al., 2016), for the estimation of the green leaf area and relative chlorophyll 

content respectively. These methods can be used to monitor field trials but are not effective in 

monitoring senescence dynamics at commercial scale. New sensing technologies have contributed to 

a substantial improvement in the monitoring of SG in different crops (Cerrudo et al., 2017; Kipp et 

al., 2014; Liedtke et al., 2020; Lopes & Reynolds, 2012). High-throughput phenotyping (HTP) with 

remote sensing is a rapid and non-destructive technology that can be used to monitor senescence of 

https://www.grace-bbi.eu/
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numerous genotypes, thus supporting breeding programs (Anderegg et al., 2020; Hassan et al., 2018). 

Remote sensing technologies use different types of sensors, such as Red-Green-Blue (RGB), 

multispectral, hyperspectral, and thermal sensors, installed on satellites and on unmanned aerial 

vehicles (UAVs) (Xie & Yang, 2020). Spectral data can be used to calculate vegetation indices (VIs), 

which can be used to estimate crop traits related to SG trait: Normalized Difference Vegetation Index 

(NDVI) for green biomass (Cabrera-Bosquet et al., 2011), Enhanced Vegetation Index (EVI) for leaf 

area index (LAI) (Alexandridis et al., 2020) and Modified Chlorophyll Absorption in Reflectance 

Index (MCARI) for chlorophyll content (Haboudane et al., 2002). Other VIs, such as the Plant 

Senescence Reflectance Index (PSRI) (Merzlyak et al., 1999) or the Structure Insensitive Pigment 

Index (SIPI) (Peñuelas et al., 1995), which are based on the chlorophyll/carotenoid ratio as the 

decomposition rates of these pigments is affected during senescence, were specifically developed to 

study crop senescence. The normalized difference water index (NDWI) (Gao, 1996), calculated using 

near-infrared (NIR) and shortwave-infrared (SWIR) spectral bands, has been proposed as a powerful 

direct water-sensitive VI, which can be used for the remote sensing of canopy water content (CWC) 

(Jackson et al., 2004). However, NDWI is rarely calculated by UAV because it requires costly sensors 

that are equipped with the SWIR band. (Zhang & Zhou, 2019) compared direct against indirect (which 

does not include the SWIR band) water-sensitive VIs, such as NDVI, NDRE, CIgreen and CIred-

edge and found that these VIs were strongly correlated with the CWC as the direct VIs. 

Field trials carried out with small plots cannot be monitored using satellite data, for this HTP using 

UAV-based multispectral images is best used in breeding programs where numerous genotypes are 

compared (Gracia-Romero et al., 2019; Ostos-Garrido et al., 2019; Su et al., 2019; Varela et al., 

2021; Yang et al., 2017; Zhou et al., 2019). UAV-based multispectral images were used in many 

studies to compare genotypes on the basis of VIs linked to LAI (Potgieter et al., 2017), green LAI 

(Blancon et al., 2019), canopy cover (Makanza et al., 2018), crop biomass and yield (Johansen et al., 

2020; Wang et al., 2019), and senescence dynamics (Hassan et al., 2018). However, many VIs show 

non-linear relationships with their associated crop traits (Verrelst, Camps-Valls, et al., 2015). 

Machine learning (ML) regression algorithms have increasingly been used in HTP to recognize non-

linear and non-parametric relationships. ML is used to combine multiple VIs for estimating crop traits 

from a sequence of UAV remote sensing acquisitions. ML models use two main data sets: a training 

set on which the best model is trained to fit the measured parameters and a test set used to assess the 

performance of model (Kuhn & Johnson, 2013). In addition to the VIs data, with ML methods 

numerous types of data, such as categorical variables (e.g. genotype, crop type, locations, agronomic 

treatments) (Im et al., 2009; Meroni, Waldner, et al., 2021; Wolanin et al., 2020), can be used in the 

analysis (Verrelst et al., 2019). A ML method commonly used in many remote sensing analyses is 
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random forest (RF) (Belgiu & Drăguţ, 2016; Holloway & Mengersen, 2018), which can estimate crop 

biomass (Han et al., 2019) and yield (Johansen et al., 2020) from UAV multispectral images. A main 

limit of the RF model is its transferability to environments, cropping systems or growing seasons 

different from those used for training the model (Vuolo et al., 2013). Another limitation is in the 

training set size (Millard & Richardson, 2015) and the unreliability of predictions made beyond the 

range of values of the parameters present in the training set (Shah et al., 2019). In addition, 

Schauberger et al. (2020) reported that 52% of the studies on ML do not validate the models' 

performance with independent test sets. Overall, the quality of training data for developing robust 

ML models is the key for successfully transferring the trained model and its knowledge to other target 

domains/tasks. For these reasons, new studies are needed to assess the transferability of ML models 

for UAV applications in agricultural sciences (Johansen et al., 2020). 

However, to date, only time series VIs data from UAV, and not the estimated crop traits of ML 

models, are used for HTP. A set of known models are normally fitted to VIs time series to characterize 

plant growth/status associated to different phenological phases. Specifically for the senescence, 

logistic functions (Christopher et al., 2014) and the Gompertz model (Anderegg et al., 2020) are the 

two most used models. Another potential approach to fit VIs data is the generalized additive model 

(GAM) (Nolè et al., 2018). Antonucci et al. (2021) for example successfully used GAM approach for 

HTP of whole-canopy photosynthesis and transpiration. Although remote sensing applications that 

support these approaches exist and have been already tested successfully for field crops (Alam et al., 

2012; Kavats et al., 2019; Yang, 2011; Zhang et al., 2021), no remote sensing application for 

estimating moisture content of Miscanthus are reported in scientific literature.  

As a first-time testbed for phenotyping Miscanthus with UAV remote sensing, two locations, where 

14 contrasting Miscanthus hybrids were compared in a completely randomized block design, were 

monitored regularly with moisture content measurements and UAV flights and senescence dynamics 

were assessed during two growing seasons. The objectives of this study were: 1) to evaluate the 

performances and transferability of RF models in estimating the moisture content of Miscanthus 

biomass and 2) to phenotype the dynamics of senescence and identify SG trait of contrasting 

Miscanthus hybrids using GAM applied to moisture content time series. 

4.2 Materials and methods 

4.2.1 Experimental design 

This study is part of the EU-BBI funded project GRACE (GRowing Advanced industrial Crops on 

marginal lands for biorEfineries) that aims to prove the feasibility of large-scale Miscanthus 

cultivation on marginal land. Two of the seven plot scale (PS) trials conducted within GRACE project 

have been selected for this study. The two sites were located in the province of Piacenza (NW Italy): 

https://www.grace-bbi.eu/
https://www.grace-bbi.eu/


Moisture content estimation and senescence phenotyping 

74 

PAC 1 located in San Bonico (45°00′11.70″ N, 9°42′35.39″ E) and PAC 2 located in Chiulano 

(44°50′40.32″ N, 9°35′04.93″ E) (Figure 4.1). Former land use was arable land with cereal crops 

rotation and permanent meadow respectively, in PAC 1 and PAC 2. The climate in both locations is 

temperate. The sites differ for soil type and elevation (Figure 4.1). Meteorological data were collected 

from automatic weather stations located at each experimental site (Table 4.1). Experimental layout 

was a complete randomized block design with 14 Miscanthus hybrids (Table 4.2) with n=4 replicates 

for a total of n= 56 plots. Plot size was 6 m x 7 m. The 14 hybrids, coded from GRC 1 to GRC 15 

(except GRC 12) were grouped into three main genotypes: M. x giganteus as control genotype, 

interspecific (M. sin x M. sac) and intraspecific (M. sin x M. sin) hybrids genotypes. Both PS trials 

were established in April 2018 after winter ploughing and spring seed bed preparation (power 

harrowing). Plugs and rhizomes were manually transplanted while mechanical weeding during the 

first years was performed three times. Neither irrigation nor fertilisation were applied. Measurements 

of this study were carried in the 2nd and 3rd growing season during senescence.  

 

 

Figure 4.1 Locations, experimental field design, main soil properties and drone picture of Miscanthus trials. 
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Table 4.1 Mean monthly temperature, humidity, and rainfall in the two locations considered during the two seasons. 

Location Season Month 
Temperature  Humidity  Rainfall 

Mean (°C) Max (° C) Min (° C) Mean (%) Max (%) Min (%) (mm) 
P

A
C

 1
 

2019 

September 19.8 20.2 19.3 76.4 78.5 74.2 79.2 

October 15.5 15.8 15.2 90.1 91.3 88.8 120.6 

November 8.7 8.9 8.5 97.4 97.9 96.9 231.0 

December 4.9 5.2 4.6 91.6 92.6 90.6 73.4 

January 2.9 3.2 2.5 94.1 95.1 93.1 17.8 

February 6.7 7.2 6.2 75.3 77.2 73.3 1.2 

2020 

September 20.5 21.0 19.9 73.6 76.1 71.1 18.6 

October 13.1 13.5 12.8 87.4 89.0 85.7 103.8 

November 8.2 8.5 7.9 95.4 96.2 94.6 24.4 

December 3.3 3.5 3.1 99.1 99.3 98.9 216.8 

January 1.5 1.8 1.2 92.5 93.5 91.5 10.4 

February 4.6 4.9 4.3 96.7 97.3 95.9 0.0 

P
A

C
 2

 

2019 

September 18.0 18.4 17.7 75.8 77.6 74.0 65.8 

October 14.2 14.5 14.0 85.2 86.7 83.7 120.0 

November 7.7 8.0 7.5 91.0 92.1 89.7 295.6 

December 5.3 5.5 5.0 80.3 81.6 78.9 83.0 

January 5.1 5.4 4.8 77.6 79.7 75.5 34.0 

February 8.3 8.7 7.9 58.2 60.4 56.3 0.6 

2020 

September 16.9 17.2 16.5 72.1 73.9 70.1 19.6 

October 11.7 12.0 11.4 82.9 84.7 81.2 102.6 

November 8.3 8.5 8.1 87.5 88.6 86.3 21.4 

December 2.9 3.2 2.7 95.7 96.4 94.9 146.2 

January 2.0 2.3 1.7 80.3 81.9 78.7 94.8 

February 3.9 4.1 3.7 87.3 88.4 86.2 22.0 

 

Table 4.2 Characteristics of the 14 Miscanthus hybrids considered in this study. 

Material Hybrid code Genotype Planting density 

Seed-based plugs GRC 1-8 M.sinensis x M. sinensis 3 plants/m2 

Rhizomes * GRC 9 M. x giganteus 1.5 plants/m2 

Seed-based plugs 
GRC 10 - 14 

(except GRC 12) 
M.sinensis x M. sacchariflorus 1.5 plants/m2 

Rhizomes * GRC 15 M.sinensis x M. sacchariflorus 1.5 plants/m2 

 

* Hybrids commercially available 
 

 

4.2.2 Crop measurements 

Senescence was tracked visually following the scoring method proposed by Robson et al. (2013), 

which is based on a scale from 1 to 9, where 1 indicates the lowest level of “greenness” of the whole 

visible aerial parts of the plant and 9 is the score attributed when no visible leaf senescence occurs. 

Scores were acquired from August to February (until harvest) for a total of 10 events in PAC 1 and 9 

in PAC 2. Beside scoring senescence, at each measurement event whole stems samples randomly 

selected for each plot (20 for M. sin x M. sin and 10 for M. sin x M. sac hybrids respectively) were 
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sampled to calculate plant moisture content. Samples were weighed immediately after harvest and 

again after having been oven dried at 105°C and then percentage of moisture content was calculated 

(Samuelsson et al., 2006). 

4.2.3 UAV multispectral data and vegetation indices 

The unmanned aerial vehicle (UAV) used in the experiment was a four-rotator DJI Matrice 210 RTK 

(SZ DJI Technology Co., Shenzhen, Guangzhou, China) combined with a RTK (Real Time 

Kinematic) GPS positioning system. At each visual scoring event a UAV multispectral data 

acquisition was performed, in addition 10 supplementary flight missions were carried out on PAC 1 

and 5 on PAC 2 to increase the frequency of senescence tracking. Ten flights were performed over 

PAC 1 in both seasons, while in PAC 2, 6 and 8 flights were realized in the first and second seasons, 

respectively (Table 4.3). The UAV was equipped with a MicaSense RedEdge-Mx multispectral 

camera (MicaSense, Seattle, WA, USA). RedEdge-Mx camera can acquire 5 different spectral bands 

images: blue (475 nm centre, 32 nm FWHM), green (560 nm centre, 27 nm FWHM), red (668 nm 

centre, 14 nm FWHM), red edge (717 nm centre, 12 nm FWHM) and near-infrared (840 nm centre, 

57 nm FWHM). 

 

Table 4.3 Unmanned Aerial Vehicle (UAV) flights performed in the two locations along two senescence seasons. 

Location Season UAV flights days 

P
A

C
 1

 2019 
05/08/2019, 10/09/2019, 27/09/2019, 11/10/2019, 26/10/2019, 

09/11/2019, 20/11/2019, 03/12/2019, 10/01/2020, 21/02/2020 

2020 
01/09/2020, 17/09/2020, 28/09/2020, 10/10/2020, 28/10/2020, 

06/11/2020, 19/11/2020, 15/12/2020, 26/01/2021, 01/02/2021 

P
A

C
 2

 2019 
12/09/2019, 12/10/2019, 09/11/2019, 10/12/2019, 10/01/2020, 

14/02/2020 

2020 
16/09/2020, 29/09/2020, 10/10/2020, 28/10/2020, 06/11/2020, 

23/11/2020, 13/12/2020, 19/02/2021 

 

All flights were performed between 11.00 and 15.00. The flight altitude above ground level (AGL) 

was 40-50 m in PAC 1 and 80-100 m in PAC 2. The forward overlap was set at 80% and lateral 

overlap was set at 75% of the images. The flight speed was set at 3 m s-1. The ground sampling 

distance (GSD) was 2.78-3.47 cm and 5.56-6.94 cm in PAC 1 and PAC 2 respectively. The flight was 

performed in automatic mode with waypoints routes as the presence of a GPS navigation system 

enables a more accurate image acquisition. The DJI Pilot software (SZ DJI Technology Co., 

Shenzhen, Guangzhou, China) was used for flight planning and automatic mission control. For the 
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radiometric calibration of the images, the reflectance of a spectral panel (MicaSense, Seattle, WA, 

USA) with reflectance values provided by MicaSense, was captured before each flight. In addition, a 

light sensor that automatically adjusts the readings to ambient light was mounted at the top of the 

UAV to minimize error during image capture. The radiometric calibration, image mosaicking and 

orthomosaic generation were done using the Pix4D mapper (Pix4D, S.A., Lausanne, Switzerland). 

The orthomosaic in reflectance values generated from the software was used for the calculation of 54 

vegetation indices (VIs) as shown in Table 4.4.  

 

Table 4.4 List of the vegetation indices evaluated in random forest models for the estimation of Miscanthus moisture 

content. 

VIs Equation Reference VIs Equation Reference 

BNDVI (NIR-Blue)/(NIR+Blue) Wang et al., 2007 MTVI1 
1.2*(1.2*(NIR-Green)-2.5*(Red-

Green)) 
Haboudane et al., 2004 

Chlrededge RedEdge/Red - 1 Gitelson et al., 2006 MTVI2 

1.5*((1.2*(NIR-Green)-2.5*(Red-

Green))/(sqrt((2*NIR+1)^2-(6*NIR-

5*sqrt(Red)-0.5)))) 

Haboudane et al., 2004 

CIgreen NIR/Green-1 Gitelson et al., 2003 NDRE (NIR-RedEdge)/(NIR+RedEdge) 
Gitelson & Merzlyak, 

1994 

CIre NIR/RedEdge-1 Gitelson et al., 2003 NDVI (NIR-Red)/(NIR+Red) Rouse et al., 1973 

Datt1 (NIR-RedEdge)/(NIR+Red) Datt, 1999 NGBDI (Green-Red)/(Green+Blue) Wang et al., 2007 

Datt2 NIR/RedEdge Datt, 1999 NGRDI (Green-Red)/(Green+Red) Tucker, 1979 

DVI NIR - Red 
Richardson & 

Wiegand, 1977 
NLI (NIR^2-Red)/(NIR^2+Red) Chen, 1996 

EVI 
2.5*((NIR-Red)/(1+NIR+6*Red-

7.5*Blue)) 
Huete et al., 2002 OSAVI (1+0.16)*(NIR-Red)/(NIR+Red+0.16) Rondeaux et al., 1996 

EVI2 2.4*((NIR-Red)/(1+NIR+Red)) Miura et al., 2008 OSAVI2 
(1+0.16)*(NIR-

RedEdge)/(NIR+RedEdge+0.16) 
Wu et al., 2008 

EVI3 2.5*((NIR-Red)/(NIR+2.4*Red+1)) Jiang et al., 2008 PNDVI 
(NIR-Blue+Green+Red)/ 

(NIR+Blue+Green+Red) 
Wang et al., 2007 

GARI 
(NIR-(Green-(Blue-Red)))/(NIR-

(Green+(Blue-Red))) 
Gitelson et al., 1996 PSRI (Red-Blue)/RedEdge Merzlyak et al., 1999 

GBNDVI (NIR-Green+Blue)/(NIR+Green+Blue) Wang et al., 2007 RBNDVI (NIR-Red+Blue)/(NIR+Red+Blue) Wang et al., 2007 

GDVI NIR-Green Tucker, 1979 RDVI (NIR-Red)/((NIR+Red)^0.5) Broge & Leblanc, 2001 

GI Green/Red Smith et al., 1995 rededgeWDRVI 

(0.1*NIR-

RedEdge)/(0.1*NIR+RedEdge)+(1-

0.1)/(1+0.1) 

Gitelson, 2004 

GLI 
(2*Green -Red -

Blue)/(2*Green+Red+Blue) 
Widlowski et al., 2000 RI (Red-Green)/(Red+Green) Escadafal & Huete, 1991 

GNDVI (NIR-Green)/(NIR+Green) Gitelson et al., 2006 SAVI ((NIR-Red)/(NIR+Red+0.5))*(1+0.5) Huete, 1988 

GOSAVI (NIR-Green)/(NIR+Green+0.16) Sripada et al., 2006 SIPI (NIR - Blue) / (NIR - Red) Peñuelas et al., 1995 

greenWDRVI 
(0.1*NIR-Green)/(0.1*NIR+Green)+(1-

0.1)/(1+0.1) 
Gitelson, 2004 SR NIR/Red Birth & McVey, 1968 

GRNDVI (NIR-Green+Red)/(NIR(Green+Red) Wang et al., 2007 TCI 
1.2*(RedEdge-Green)-1.5*(Red-

Green)*sqrt(RedEdge/Red) 
Hunt et al., 2011 

GRVI NIR/Green Tucker, 1979 TNDVI sqrt(0.5 + (NIR-Red)/(NIR+Red)) Bannari et al., 2002 

IPVI 
((NIR/(NIR+Red))/2)*((NIR-

Red)/(NIR+Red)+1) 
Crippen, 1990 TRBI (Green+Red)/NIR Vincini & Frazzi, 2011  

MCARI 
((RedEdge-Red)-0.2*(RedEdge-

Green))*(RedEdge/Red) 
Daughtry et al., 2000 VARIgreen (Green-Red)/(Green+Red-Blue) Gitelson et al., 2002 

MCARI/MTVI2 MCARI/MTVI2 Eitel et al., 2007 VARIrededge (RedEdge-Red)/(RedEdge+Red) Gitelson et al., 2002 

MCARI/OSAVI MCARI/OSAVI Wu et al., 2008 WDRVI 
(0.1*NIR-Red)/(0.1*NIR+Red)+(1-

0.1)/(1+0.1) 
Gitelson, 2004 

MCARI/OSAVI2 MCARI/OSAVI2 Wu et al., 2008 WDRVI2 
(0.2*NIR-Red)/(0.2*NIR+Red)+(1-

0.2)/(1+0.2) 
 

MCARI2 
((NIR-RedEdge)-0.2*(NIR-

Green))*(NIR/RedEdge) 
Wu et al., 2008 WDRVI3 (0.1*NIR-Red)/(0.1*NIR+Red)  

MSAVI 
((2*NIR+1-sqrt((2*NIR + 1)**2-

(8*(NIR-Red))))/2) 
Qi et al., 1994 WDRVI4 (((0.1*NIR-Red)/(0.1*NIR+Red))+1)/2  
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To extract the spectral information of each experimental plot, the polygons of the experimental design 

were drafted in AutoCAD (Autodesk, San Rafael, California, USA) and georeferenced based on the 

UAV multispectral images by using QGIS software (QGIS Development Team, 2021). 

4.2.4 Machine learning model for moisture content estimation 

A recursive feature elimination (RFE) algorithm (Feng et al., 2020; Yue et al., 2018) was initially 

applied to solve the multi-collinearity problem among VIs by selecting the most important VIs for 

moisture content estimation. Inputs for the RFE algorithm were the predictors variables (the 54 VIs 

calculated from UAV multispectral images) and the corresponding target values (the measured plant 

moisture content). In the RFE algorithm, the random forest (RF) model was used to minimize the root 

mean square error (RMSE). The RFE results were combined with the pickSizeTolerance function to 

select a model containing fewer predictors variables within the bounds of a user-defined threshold 

metric (Parmley et al., 2019). RMSE metric and the 0%, 1% and 5% tolerance thresholds were utilized 

to identify models with acceptable performance but with fewer predictors variables. 

On the selected VIs, RF was then used to estimate the moisture content of Miscanthus hybrids. RF 

model is an ensemble learning model where the output averages the result of multiple regressions 

trees (Kamir et al., 2020). The RF models were created using the caret R package (Kuhn, 2008). Two 

steps in RF modelling were adopted: firstly, RF was trained and tested on the VIs selected from RFE 

algorithm at the tolerance threshold of 1%; secondly, the three categorical crop variables (material, 

hybrid code, and genotype, Table 4.2) and their combinations were added in RF modelling to check 

for improvement in model’s performance.  

For the RF modelling, the optimal size of the variable subset (mtry) was obtained by grid-searching 

method using repeated k-fold cross-validation. The repeated k-fold cross-validation consist of 

dividing the data into k independent folds of the same size, training the algorithm on (k-1) folds and 

testing its accuracy on the remaining fold based on the error between predicted and target values 

several times (Kamir et al., 2020). In our study we used a ten-fold cross validation, which was 

repeated 5 times. This procedure was used to estimate the moisture content and to evaluate the 

transferability of the models tested on 5 subset test datasets: 4 specific season- and location-datasets 

(two locations x two growing seasons) and one reference dataset, as a comparison. The reference 

dataset was created by using a stratified random sampling method (Han et al., 2019): data from both 

locations and seasons were split into 70/30 between training and testing based on moisture content 

distribution. To include the categorical variables into the models (second step), a one-hot-encoded 

approach was used to encode categorical variables into numbers, assigning the value 1 when the 

condition is satisfied and 0 when it is not satisfied. 
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RF models’ performances were evaluated calculating the root mean square error (RMSE, Equation 

4.1) and the normalized root mean square error (NRMSE, Equation 4.2) as follows: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛𝑖𝑖=1 𝑛𝑛  Equation 4.1 

𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (%) =  

�∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛𝑖𝑖=1 𝑛𝑛𝑦𝑦� 100 
Equation 4.2 

 

where 𝑛𝑛 is the sample number, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the estimated and measured moisture content, and 𝑦𝑦� is 

the mean of the measured value. The performance metrics were also calculated for different intervals 

of moisture content and each Miscanthus hybrid. The moisture content intervals investigated were 

lower than 30%, between 30% and 60%, higher than 60%, and finally between 10% and 80%. The 

set size used for each training dataset was reported to compare the metrics of the models. For each 

model, the RMSE and NRMSE were calculated for each genotype and for the different moisture 

content intervals to evaluate the models. 

4.2.5 GAM for phenotyping Miscanthus senescence dynamics 

The moisture content during senescence was estimated from spectral data acquired by UAV using the 

validated RF model: this approach was selected to add supplementary flights to the dataset without 

field measurements. The validated RF model included as predictors variables the VIs and the three 

categorical variables. The time series moisture content dataset estimated from RF was fitted against 

the modified days of the year (DOY). Early and late senescence in Miscanthus occur normally in two 

different years. To overcome the problem of having non-sequential DOY data along the senescence 

season, moisture content data of January and February were calculated by adding 365 to the DOY of 

the corresponding year. To phenotype the dynamics of senescence and identify stay-green (SG) trait 

of the different Miscanthus hybrids, statistical analysis of the estimated moisture content time series 

was carried out via a generalized additive model (GAM). The regression model GAM is a non-

parametric extension of the generalized linear model (GLM), which allows the integration of non-

parametric smoothing functions and non-linear fitting of the variables. GAM models were fitted in R 

package mgcv (Wood, 2017). The fitted model used fixed factors and a smooth for DOY, based on 

location, season, and hybrid. GRC 9 (M. x giganteus) was used a reference to detect difference 

between interspecies and intraspecies Miscanthus hybrids. 
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4.3 Results 

4.3.1 Dynamics of moisture content in Miscanthus biomass 

The variation of moisture content and its frequency distribution measured during the two senescence 

seasons at two locations is shown in Figure 4.2 and in Figure 4.3. Overall, moisture content loss 

started at the beginning of December at both locations and for all genotypes (Figure 4.2). M. sin x M. 

sac hybrids showed a higher moisture content (+ 18 % and + 6 %) than M. sin x M. sin hybrids and 

M. x giganteus in both locations from December until harvest in late winter (Figure 4.2 and Figure 

4.3). On average, M. sin x M. sac hybrids and the M. x giganteus were harvested at 45 % and 37 % 

moisture content respectively (Figure 4.2 and Figure 4.3). M. sin x M. sin hybrids had an average 

moisture content at winter harvest of 22%. The dynamics of moisture content during senescence is 

confirmed by visual recording of senescence score based on plant greenness (Figure 4.4). For all 

genotypes, the correlation between senescence score and moisture content indicated that moisture 

content loss starts when senescence score values of 4 are recorded. 

 

 

Figure 4.2 Temporal dynamic of the measured moisture content of different Miscanthus genotypes along two growing 

seasons and two locations. 
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Figure 4.3 Frequency distribution of the moisture content of different Miscanthus genotypes during the two seasons and 

on two locations. 

 

 

Figure 4.4 Relation between senescence score and moisture content of different Miscanthus genotypes. 
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4.3.2 Recursive Feature Elimination of vegetation indices 

The optimal number of vegetation indices (VIs) included in the models to minimize RMSE in the 

estimation of moisture content was obtained by the recursive feature elimination (RFE) algorithm 

with repeated cross-validation (Figure 4.5). RFE analysis showed that using 4 or less VIs led to a 

moisture content estimation with RMSE values higher than 8 % (Figure 4.5a). With the 0% tolerance 

threshold, the minimum RMSE (7.4%) was achieved with 30 VIs. However, the use of 20 or more 

VIs led to a moisture content estimation with a mean RMSE value of 7.4%. On the contrary, with the 

thresholds of tolerance of 1% and 5%, the optimal number of VIs was 14 (RMSE = 7.5 %) and 6 

(RMSE = 7.8%) respectively (Figure 4.5a). The threshold of tolerance of 1% was chosen as the 

threshold that maximises the model's performances with the minimum number of VIs. According to 

the importance of the ranking (Figure 4.5b), 14 VIs have been selected for RF models training among 

the 54 VIs calculated (Figure 4.5b). The 14 VIs were: BNDVI, GDVI, PSRI, MCARI/MTVI2, 

GOSAVI, NGBDI, NLI, GBNDVI, GLI, MCARI/OSAVI2, SIPI, MCARI2, OSAVI2 and GI. The 6 

most important VIs to reach 5% tolerance (RMSE < 7.8 %) were (Figure 4.5b): BNDVI, GDVI, PSRI, 

MCARI/MTVI2, GOSAVI and NGBDI. 

 

 

Figure 4.5 (a) Results of the RFE algorithm with different tolerance thresholds and (b) importance of the VIs used in the 

different tolerance thresholds (Blue = 5%, Yellow =1% and Grey = 0%). 
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4.3.3 RF model performance and transferability 

The performances (RMSE and NRMSE) of the random forest (RF) models were compared among 

the season-specific datasets of the two location and against one reference dataset (split into 70/30 

training/test) (Table 4.5). When all the genotypes and all moisture content intervals were considered, 

the RF model of the reference dataset was the most accurate one among the 5 models considered in 

estimating Miscanthus moisture content (RMSE = 6.9% and NRMSE = 14%). The other models 

achieved lower accuracy values with RMSE ranging from 9.2% to 10.6% and NRMSE from 20.1% 

to 22.1%. The accuracy of the RF models trained with the season-location specific datasets and for 

the intervals of moisture content of 30-60% and > 60% was on average similar (RMSE =8.5%) to the 

accuracy of the RF model trained with the reference dataset for the same intervals (RMSE = 6.3%). 

On the contrary, the accuracy of the RF models for the season-location specific datasets was lower 

for the interval of moisture content < 30% (RMSE =16.4%) than the reference dataset (RMSE =10.7% 

and 6.3% respectively).  

 

Table 4.5 Results of the RF models performance according to location, season, moisture content intervals and genotype 

(blue = M. sin x M. sin, grey = M. x giganteus and green = M. sin x M. sac). 

Test dataset VIs Intervals of moisture 

content (%) 

M. sin x M. sin M. x giganteus M. sin x M. sac All Genotypes 

Location Season n RMSE NRMSE n RMSE NRMSE n RMSE NRMSE n RMSE NRMSE 

P
A

C
 1

 

2019 

x < 30 81 19.7 87.5 0 18.4 75.9 2 21.0 83.8 83 19.7 86.7 

30 ≤ x ≤ 60 296 6.1 12.5 49 5.9 13.1 249 6.4 12.5 594 6.2 12.5 

x > 60 45 11.9 18.1 6 10.0 15.8 26 9.4 14.4 77 11.0 16.9 

10 ≤ x ≤ 80 422 12.2 26.2 55 9.6 19.0 277 7.9 14.9 754 10.6 21.6 

2020 

x < 30 105 4.5 18.2 2   5   112 4.5 18.2 

30 ≤ x ≤ 60 229 8.8 18.2 40 11.8 22.1 228 11.6 22.0 497 10.2 20.2 

x > 60 83 12.2 17.2 13 4.7 7.7 44 6.0 9.7 140 8.3 12.9 

10 ≤ x ≤ 80 417 8.5 18.4 55 11.6 21.5 277 11.5 21.9 749 9.9 20.2 

P
A

C
 2

 

2019 

x < 30 84 22.7 113.2 2   5   91 22.7 113.2 

30 ≤ x ≤ 60 303 9.0 20.7 43 4.6 9.8 247 5.2 9.8 593 7.0 14.5 

x > 60 48 8.4 13.3 11 4.6 7.7 25 6.3 10.0 84 7.6 12.1 

10 ≤ x ≤ 80 435 13.6 31.7 56 4.6 9.4 277 5.4 9.9 768 10.6 22.1 

2020 

x <30 84 19.2 93.0 2   3 9.4 31.8 89 18.8 88.9 

30 ≤ x ≤ 60 288 5.6 11.6 45 9.2 18.5 254 4.8 9.3 587 5.7 11.4 

x > 60 76 5.8 9.4 12 3.5 5.8 40 6.7 10.7 128 5.9 9.5 

10 ≤ x ≤ 80 448 11.1 26.6 59 8.7 17.0 297 5.1 9.9 804 9.2 20.1 

Reference dataset* 

x < 30 89 10.8 51.8 1 10.8 43.3 3 8.9 32.3 93 10.7 50.0 

30 ≤ x ≤ 60 260 5.1 10.5 41 7.8 15.7 227 7.1 13.5 528 6.3 12.5 

x > 60 61 7.3 11.6 10 5.0 8.1 31 4.7 7.4 102 6.3 10.0 

10 ≤ x ≤ 80 410 6.8 14.9 52 7.6 14.9 261 6.9 12.9 723 6.9 14.0 
 

Abbreviations: n is the training set size, RMSE: root mean square error (%), NRMSE: normalized root mean square error (%). 

* Reference dataset is composed by 30 % of the initial dataset (both locations and seasons) used for the validation and 70% used for RF model training. 
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The addition of categorical variables (material, hybrid code and genotype of Table 4.2) to the 

reference dataset model of VIs improved the accuracy of moisture content estimation (Figure 4.6). 

The single addition of material, hybrid code or genotype in the model (Figure 4.6b, c, d) decreased 

the RMSE from 6.9% (model with only Vis) to 6.8%, 6.4% and 5.7 % respectively. The simultaneous 

addition of three categorical variables to the model, achieved the best performance with an RMSE = 

5.6% and NRMSE= 11.4% (Figure 4.6e). Finally, the RMSE of all models was evaluated for each 

genotype (Figure 4.6f). The addition of categorical variables decreased the RMSE value with respect 

to the model with only VIs for the M. x giganteus genotype from 7.6% to 5.6%, for the interspecific 

M. sin x M. sac genotype hybrids from 6.9% to 4.7%, while for intraspecific M. sin x M. sin genotype 

hybrids from 6.8% to 6.1%. 

 

 

Figure 4.6 Estimated vs measured moisture content (%) of Miscanthus with RF model with only VIs and no categorical 

variables (a), with the addition of transplanting material (b), of hybrid (c), of genotype (d) and their combination €. RMSE 

for each model are reported as barplot (f) according to the different genotype. 

 

4.3.4 Phenotyping of Miscanthus senescence dynamics with multiple UAV flights 

The RF model trained with the VIs and the three categorical variables was used to estimate moisture 

content of Miscanthus hybrids from spectral data of multiple UAV flights at two locations. 

Generalized additive model (GAM) was applied to time series moisture content data estimated from 

RF model, with the M. x giganteus (GRC 9) as reference for estimating significant differences among 
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the hybrids during senescence. M. sin x M. sin hybrids (GRC 1-8) from DOY 280 (mid-early October) 

showed a constant and significant lower moisture content than the M. x giganteus hybrid (Figure 4.7). 

The first genotype showing a significant difference in moisture content compared to GRC 9 was GRC 

5, at DOY 260 (mid-September), while the last was GRC 1, at DOY 312 (mid-early November). 

Intraspecies M. sin x sin hybrids showed the highest variability on moisture content loss during 

senescence compared to interspecies M. sin x M. sac hybrids. The estimated difference of moisture 

content at harvest varied from 10.2% for GRC 1 to 14.5% for GRC 6. On the contrary, constant 

negative differences compared to GRC9 occurred later in the season (early November) for 

interspecific M. sin x M. sac hybrids (GRC 10-15). The difference is statistically significant 

approximately from DOY 295 (mid-late October) for GRC 10 hybrid and from DOY 314 (mid-early 

November) for GRC 13 hybrid. At harvest, the estimated moisture content difference varied from -

9.2% for GRC 11 to -10% for GRC 14. The rhizome-based GRC 15 hybrid, a M. sin x M. sac 

genotype, showed a similar moisture content dynamics to the other rhizome-based hybrid (GRC 9). 

 

 

Figure 4.7 Senescence dynamics of the different Miscanthus hybrids according to the difference in estimated moisture 

content with reference hybrid M. x giganteus - GRC 9 (dashed black line). The estimation of moisture content time series 

was carried out by using a GAM. Solid and dashed coloured lines denotes respectively significant (P<0.05) and not 

significant differences of the corresponding hybrid compared to reference hybrid. 
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4.4 Discussion 

The characterization of moisture content dynamics of Miscanthus biomass is important to determine 

the harvest time and selecting the most suitable genotypes in each environment. This study estimated 

the moisture content of 14 contrasting Miscanthus hybrids combining unmanned aerial vehicle 

(UAV) remote sensing and machine learning. The random forest (RF) model was trained with 

moisture content values measured directly from each plot trial, UAV multispectral data (the 

vegetation indices) and categorical variables of Miscanthus hybrids (material, hybrid code and 

genotype). The time series of the moisture content values estimated by RF model from VIs derived 

from multiple UAV flights were used for phenotyping senescence dynamics and identifying the stay-

green (SG) trait of Miscanthus hybrids using the generalized additive model (GAM). 

4.4.1 Selection of multispectral vegetation indices for Miscanthus moisture 

content estimation 

Increasing the number of VIs from 1 to 14 improved the RF model’s accuracy and allowed to decrease 

RMSE from 10 % to 7.5 % (Figure 4.5a). Generally, the estimation of the crop traits via multiple VIs 

is affected by data redundancy and multi-collinearity among some vegetation indices (VIs) (Yue et 

al., 2018). The use of recursive feature elimination (RFE) algorithm proved to be a suitable approach 

to minimise RMSE while reducing the noise effect caused by data redundancy and multi-collinearity, 

as suggested by Anderegg et al. (2020) and Han et al. (2019). This study showed that the three most 

important VIs for estimating moisture content were VIs based on blue (BNDVI), green (GDVI) and 

red-edge (PSRI) spectral bands (Figure 4.5b). Zhu et al. (2019) found that the blue band is sensitive 

to the change of carotenoid content and the green and red-edge bands are sensitive to the change of 

chlorophyll content. VIs based on these spectral bands indeed have been used to study crop 

senescence dynamics (Anderegg et al., 2020; Peñuelas & Inoue, 1999). The blue band proved to be 

the most important variable for predicting harvest date (pod’s maturity) in soybean (Yu et al., 2016). 

Anderegg et al. (2020) reported that the time series of PSRI could accurately track senescence 

dynamics of the canopy of wheat and replace the visual scorings. Furthermore, the SIPI was strongly 

correlated with relative water content (RWC) and can indirectly evaluate leaf water stress (Peñuelas 

& Inoue, 1999). Also, this study confirmed that the VIs selected by the RFE algorithm and used in 

the RF model were sensitive to changes of chlorophyll/carotenoid ratio during senescence. Finally, 

although no VIs based on the SWIR band were used in this study, it was demonstrated that the 

combination of multiple VIs based on VIS-NIR images compensated for the lack of the SWIR band, 

which is known to predict well crop moisture content when integrated with VIs such as NDWI (Zhang 

& Zhou, 2019). 
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4.4.2 Moisture content estimation with a machine learning algorithm 

This study estimated the moisture content with the RF model, trained with a wide range of genotypes, 

across two senescence seasons and at two different locations, differing strongly in soils and slightly 

in climate. These differences, as suggested by Maxwell et al. (2018), help to assess the RF model 

transferability. The transferability of the moisture content estimation models was evaluated by 

splitting the moisture content dataset into 5 test datasets. The performance metrics of the RF models 

showed that a good accuracy (6.9% of RMSE and 14.0% of NRMSE) was achieved when all the 

genotypes and all moisture content intervals were considered in the models (Table 4.5). Similar 

results were reported by Li et al. (2021) to estimate the moisture content of three species of trees, 

who achieved a NRMSE between 8.6% and 13.9%. The models evaluated to estimate the moisture 

content might be affected by errors in the estimation in some moisture content intervals due to limits 

in the range of data used to train the model (Shah et al., 2019). Indeed, small increases in RF models 

performance were found when the models were trained with the specific season- and location-

datasets. This difference is due to different models’ accuracy when the moisture content is < 30%. 

During the two seasons, many hybrids did not reach such low moisture content, and thus the training 

set size for this interval was lower. 

To assess the performance of the models in identifying the optimal harvest dates based on moisture 

content at different endpoints of drying, the moisture content dataset was indeed divided into different 

intervals (<30%, 30-60, >60% and 10-80%). It is considered that the optimal moisture content for the 

Miscanthus winter harvest is at or below 20% (Lewandowski et al., 2016) in order to avoid self-

ignition of biomass, minimise transport costs and an increase combustion efficiency (Robson et al., 

2013). In this study, especially novel interspecies seed-based M. sin x M. sac hybrids rarely reached 

at harvest a moisture content lower than 30% (Figure 4.2), while M. sin x M. sin in some cases dried 

until 10 %. In the low moisture content interval (<30%), a large difference in RMSE was found 

between the model trained with the reference dataset and on the season-location specific datasets 

(Table 4.5). These results indicate that the tested models cannot be transferred with good accuracy to 

locations and or/growing seasons where biomass of these genotypes dried until moisture content 

<30%. The low transferability of RF beyond the extreme values of the training data range confirmed 

that this is one of the main limits of the RF model (Johansen et al., 2020; Vuolo et al., 2013). On the 

contrary, the RF models were transferable in different locations and growing seasons for moisture 

content values ranging between 30 and 60% (Table 4.5). The training set size and the moisture content 

distribution during senescence confirmed to be the most important dataset’s characteristics to achieve 

good model’s performances (Millard & Richardson, 2015) and transferability (Johansen et al., 2020). 



Moisture content estimation and senescence phenotyping 

88 

The addition of categorical variables in RF model improved the estimation of moisture content. 

Introducing three categorical variables such as material, hybrid and genotype decreased more the 

RMSE than adding only material type (Figure 4.6e, b). The M. sin x M. sac and M. x giganteus 

genotypes showed the highest improvement of RMSE due to the addition of these categorical 

variables (Figure 4.6f). The data imbalance in the “hybrid” categorical variables among control M. x 

giganteus (n=1), interspecies (n=4) and intraspecies (n=8) genotypes hybrids could have caused these 

differences in model’s performance. 

Another limitation of the RF model developed in this study relies on the fact that it is composed of 

multiple VIs calculated with precise multispectral bands. This means that our RF model might not 

reach the same accuracy if the same VIs are calculated on spectral data acquired with different 

multispectral cameras operating within different bands intervals. This calls for the development of 

algorithms able to overcome these differences in the spectral data through advanced normalization 

and calculation procedures of VIs from different sensors (Emilien et al., 2021; Hoque & Phinn, 2018). 

4.4.3 Phenotyping stay-green trait via UAV remote sensing to capture genotypic 

variation during senescence 

This study demonstrated that high-throughput phenotyping (HTP) of contrasting Miscanthus hybrids 

is possible by combining multiple UAV flights and GAM modelling. Stay-green (SG) is an important 

phenotypic trait when evaluating the senescence of novel Miscanthus hybrids. The goal of plant 

breeders is to obtain high yielding plants with high biomass quality. In Miscanthus, a delayed 

senescence is expected to increase yields, while an early senescence is expected to increase biomass 

quality (Robson et al., 2013). In our environments, senescence of M. sin x M. sin hybrids led to drier 

biomass (22% mean moisture content in late February) than commercially available rhizome-based 

hybrids (GRC 9-15 with 37%), while M. sin x M. sac hybrids showed a SG trait with an average 

moisture content of 45% until harvest. These findings confirmed that biomass with low moisture 

content at the harvest is usually related to early senescence in Miscanthus, as was found by Robson 

et al. (2013). However, opposite results to our study were reported by Nunn et al. (2017) that observed 

a lack of relationship between an early senescence and low moisture content at harvest in different 

locations across Europe. 

Mild cold conditions during autumn-winter periods affected the start of senescence and moisture 

content losses dynamics until late winter harvest in all Miscanthus hybrids. The overwintering 

conditions (e.g. number and frequency of chilling frosts) between the start of senescence and harvest 

time have a higher effect on the moisture content than the senescence itself (Sarath et al., 2014). That 

was the case in our two southern European locations, where a reduced frequency of killing frost days 

and absence of prolonged freezing periods in late autumn - early winter in 2019-2020 seasons (Table 
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4.1) might not have induced complete senescence in the M. sin x M. sac hybrids leading to a higher 

moisture content at harvest. During the first years after establishment, Miscanthus might have a 

reduced senescence (Clifton‐Brown & Lewandowski, 2000) due to changes in the source-sink 

dynamics of young Miscanthus plants (Boersma et al., 2015). However, standing age did not affect 

in our case the observed delayed senescence since measurements were done on mature plantation at 

2nd and 3rd year.  

Genotypic variations in flowering and senescence times are instead two key explanatory factors of 

SG trait observed in perennial crops. The relationship between flowering and senescence in 

Miscanthus has been proposed to promote nutrient remobilization, and hence biomass quality 

improvement (Jensen et al., 2017). GAM applied to estimated moisture content values from the RF 

model from multiple UAV flights helped us to capture differences in senescence dynamics in 

contrasting Miscanthus hybrids (Figure 4.7). A constant increase in the differences between the 

estimated moisture content of interspecies M. sin x M. sac and intraspecies M. sin x M. sin hybrids 

was observed between DOY 300 (late October) and DOY 350 (mid-December). During this period, 

the mean temperature decreased under 10°C. Therefore, under these mean temperature conditions, 

M. sin x M. sin hybrids might be more sensitive to temperatures below 10°C and thus start active 

senescence sooner than M. x giganteus and M. sin x M. sac hybrids that instead showed a delayed 

senescence. Fonteyne et al. (2016) reviewed the effect of frost and chilling stress in Miscanthus 

genotypes and found that M. sacchariflorus was more resistant to cold stress than M. sinensis. All M. 

sin x M. sac genotype hybrids showed a more persistent SG compared to M. x giganteus and M. sin x 

M. sin hybrids. In agreement with our results, Rusinowski et al. (2019) found that GNT 34 hybrid, 

(GRC 13 in this study), had a longer SG period than M. x giganteus. Only GRC 15 among M. sin x 

M. sac genotype had a similar senescence dynamic to the M. x giganteus. The similar senescence 

dynamics observed for these two commercially available rhizome-based hybrids confirms that 

transplanting material (rhizome vs seed-based plugs) has an impact on moisture content loss during 

senescence. The observed differences in senescence time and moisture content loss rate during 

senescence among Miscanthus genotypes are respectively linked to flowering time and nutrient 

remobilization. Other studies confirming that M. sin x M. sin hybrids flowered earlier (mid-summer) 

than rhizome-based M. x giganteus hybrid while M. sin x M. sac never reached flowering ( Clifton-

Brown & Lewandowski, 2002; Nunn et al., 2017). Jensen et al. (2017) found, for the similar 

contrasting hybrids, that nitrogen and phosphorous remobilization rate to underground rhizomes 

followed the same trend of moisture content loss observed also in our study. The absence or delay of 

flowering respectively in M. sin x M. sac and rhizome-based hybrids may have caused delayed 

senescence that was also observed in the SG trait in this study. As a consequence, these genotypes 



Moisture content estimation and senescence phenotyping 

90 

were harvested at higher moisture content (Figure 4.2) and likely higher nutrient content compared 

to M. sin x M. sin hybrids. The high variability among Miscanthus hybrids in moisture content loss 

dynamics during senescence (Figure 4.7) might be further explained by the wider geographical 

distribution of M. sinensis than of M. sacchariflorus (Clifton-Brown et al., 2015). This may have 

produced a higher genetic variation of the phenotypic traits due to the hybridisation among M. 

sinensis species (Robson et al., 2013). Additionally, also the cold resistance trait likely depends on 

the origin and in situ environmental characteristics of the genetic accession of the Miscanthus species. 

In fact, opposite results to our study were reported by (Clifton-Brown et al., 2002) showing that 

different M. sin x M. sin hybrids had delayed senescence with respect to M. x giganteus and M. 

sacchariflorus hybrids. 

4.5 Conclusion 

This study demonstrated that moisture content of Miscanthus can be accurately estimated via machine 

learning algorithm applied to multiple VIs calculated from UAV-based VIS-NIR images. The RF 

model developed on different genotypes showed a good transferability to multiple location and 

seasons when moisture content ranges from 30% to 60%. Further training datasets are required to 

extend the transferability and confirm the same performance of the RF model at lower moisture 

content values (10-30%). For the first time, we showed that the combination of machine learning 

(ML) and GAM applied to time series of moisture content values estimated from VIs derived from 

multiple UAV flights is a powerful tool for high throughput phenotyping (HTP). Remote sensing can 

be used for phenotyping future advanced breeding programs of Miscanthus. The possibility to 

distinguish via remote sensing the SG trait of novel Miscanthus hybrids can deepen our understanding 

of key factors mediating the induction of early or delayed senescence. Our study focused on the use 

ML algorithms to estimate moisture content during Miscanthus senescence, but we believe that the 

same methodological approach can be used for estimating other phenological traits or yield 

components in similar and/or different crops. This is particularly relevant for upscaling models from 

experimental plot to field scale by using satellites. Satellites can collect data of many fields 

simultaneously, with a larger number of spectral bands, like the SWIR band, that could ultimately 

support with high precision and resolution moisture content and yield estimation. ML algorithms 

could be applied in remote sensing to develop satellite and UAV applications beneficial to sustainable 

crop management e.g. in the case of Miscanthus to identify optimal harvest date or to predict 

commercial yield (quantity and quality). 
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Abstract 

This chapter first provides a synthesis of the main results presented in the previous chapters. 

Subsequently, in view of these results, the contributions to scientific context and future research are 

discussed. 
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5.1 Main results 

The main objective of this thesis was to evaluate the application of the UAV multispectral remote 

sensing platform for high-throughput phenotyping of hemp and miscanthus traits. Seven research 

hypotheses were defined (section 1.5 Thesis outline and Table 1.2) and in this chapter each research 

hypothesis is addressed, reporting the main results. 

H1. The ML models and PROSAIL model can be used to estimate traits of miscanthus hybrids 

and hemp cultivars. 

This hypothesis was addressed in chapters 2, 3 and 4. The random forest (RF) algorithm was used in 

this thesis for estimation of miscanthus traits, such as moisture content (Chapter 4) and light 

interception, plant height, green leaf biomass and standing biomass (Chapter 3). This thesis 

demonstrated that the RF models can accurately estimate these crop traits using the VIs derived from 

UAV multispectral images, confirming the research hypothesis. Moisture content, light interception 

and plant height were estimated with better accuracy than green leaf biomass and standing biomass. 

The UAV multispectral remote sensing and RF models have proved to be suitable tools to estimate 

these crop traits for high-throughput phenotyping of novel miscanthus hybrids and can provide 

additional information for the calibration of perennial crop growth models, such as MISCANFOR. 

The research hypothesis was also confirmed for leaf area index (LAI) and leaf chlorophyll content 

(LCC) estimation of hemp using the inversion of the PROSAIL model (Chapter 2). The inversion of 

the PROSAIL model estimated the LCC trait with less accuracy than LAI, as reported in several 

studies. As ML models, the PROSAIL model can also estimate crop traits for high throughput 

phenotyping (HTP).  

H2. The quality training data can develop robust ML models to overcome the transferability 

problem. 

This hypothesis was addressed in chapter 4. To assess the RF models transferability, in this thesis the 

RF models trained with moisture content collected from a wide range of genotypes, across two 

senescence seasons and at two different locations differing strongly in soils and differing slightly in 

climate. To evaluate the RF models transferability, the moisture content dataset was split into 5 test 

datasets. The RF models showed a good transferability to multiple locations and seasons when 

moisture content ranges were from 30% to 60%, while it showed low transferability when the biomass 

of these genotypes dried to a moisture content <30%, confirming the transferability problem of ML 

models. Indeed, during the two seasons, many hybrids did not reach such a low moisture content, and 

thus the training set size for this interval was lower. However, the quality of the training data, in terms 

of the training set size and the moisture content distribution during senescence, was confirmed as 
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being the most important dataset characteristic to achieve good model transferability, confirming the 

research hypothesis. 

H3. The peak derived from the VIs time series of UAV can be used to predict the yield of 

miscanthus. 

This hypothesis was addressed in chapter 3. The random forest (RF) was trained with the peak derived 

from the time series of the VIs fitted via generalized additive model (GAM). The peak was able to 

predict the yield of miscanthus using the RF algorithm, proving to be an important land surface 

phenology (LSP) descriptor for yield prediction and confirming the research hypothesis. The peak for 

Miscanthus hybrids occurred on average in mid-summer in Italy (southern/warm) and early autumn 

in the UK (northern/cold) locations. The RF model accurately predicted the yield with 2.3 Mg DM 

ha-1 of RMSE and 19.7 % NRMSE. The operability of this model was evaluated by a timeline of the 

performance using the peak of VIs derived from partial time series. The RF model showed a good 

capability to predict the yield months before the harvest both in Italy and in the UK. This capability 

of the model is extremely relevant for optimising Miscanthus biomass supply chain logistics, from 

field to facilities creating bioproducts or biopower. 

H4. The spectral bands used for calculating the VIs have different importance depending on 

the crop traits to be estimated.  

This hypothesis was addressed in chapters 3 and 4. The variable importance of the RF models was 

calculated using a recursive feature elimination (RFE) algorithm (chapter 4) and by dropout loss of 

RMSE (chapter 3). This thesis found a link between the spectral bands used to calculate the VIs and 

the estimated or predicted crop traits, as suggested in several studies. These results confirmed the 

research hypothesis. Indeed, in chapter 3, the VIs based on the green band as greenWDRVI and 

GNDVI were the most important variables to estimate green leaf biomass and standing biomass and 

also to predict the miscanthus yield, as was found in switchgrass and other warm-season perennial 

grasses. In chapter 4, the most important VIs for moisture content estimation were blue (BNDVI), 

green (GDVI) and red-edge (PSRI) spectral bands-based VIs that were sensitive to changes of 

chlorophyll/carotenoid ratio during senescence. Indeed, the blue band is sensitive to changes in 

carotenoid content and the green and red-edge bands are sensitive to changes in chlorophyll content, 

as found in literature. 

H5. The hybrid regression inversion methods will better estimate the crop traits than LUT 

inversion methods of the PROSAIL model. 

This thesis compared different inversion methods: two look-up table (LUT) methods based on the 

RMSEr cost function (LUT-I and LUT-II) and four hybrid regression methods based on machine 
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learning techniques (RF, GPR, ANN and EM) for the estimation of LAI and LCC traits of two hemp 

cultivars, green and yellow, in two different seasons. Generally, all evaluated inversion methods 

showed good accuracies of the hemp traits, especially for LAI, proving a transferability in both 

seasons. The best accuracies were achieved by hybrid methods with RF for the LAI and GPR for the 

LCC trait. All the hybrid methods performed better than LUT methods for the LAI (except for the 

EM method) and LCC estimation, confirming the research hypothesis. Other studies compared hybrid 

and LUT methods, but there is no univocal opinion on the best inversion method.  

H6. The PROSAIL model can be used to derive equations able to link multi-sensor VIs and to 

overcome the differences of VIs between sensors. 

This hypothesis was addressed in chapter 3. The LUT used for the PROSAIL model inversion was 

generated from the miscanthus trait values found in literature and from the location characteristics 

(North-West Italy and Mid-West Wales).  The equations derived from this LUT proved to be an 

interesting tool to overcome the issue of multi-sensor interoperability by linking VIs from 

multispectral sensors. This is particularly so when the objective is to estimate crop traits or to predict 

yield using VIs calculated from sensors with different spectral characteristics (MicaSense and 

SlantRange).  The results showed that the importance of subjecting VIs to this linking procedure 

varies from VI to VI. In fact, the green and red-edge bands-based VIs require the use of linking 

equations because they showed higher variation than the red and NIR bands-based VIs. In this thesis, 

the MicaSense and the SlantRange sensors showed a difference in the green and red-edge bands. The 

MicaSense sensor red-edge bands had a different central wavelength and a narrower green FWHM 

(full width at half maximum) compared to the SlantRange sensor. Therefore, these linking procedures 

must only be used when spectral bands-based VIs with quite different characteristics are used. 

H7. The GAM analysis, applied to the time series of the crop traits estimated by ML or 

PROSAIL model inversion, can be used for phenotyping the dynamics of the crop traits of 

contrasting miscanthus hybrids and hemp cultivars. 

This hypothesis was addressed in chapters 2 and 4. This thesis demonstrated that the HTP obtained 

by combining multiple UAV flights, estimation models, such as the ML (chapter 4) and the inversion 

of the PROSAIL model (chapter 2) and GAM modelling can characterise the dynamics of the 

phenotypic crop traits, confirming the research hypothesis. The GAM applied to estimated hemp and 

miscanthus trait values by ML or inversion of the PROSAIL model from multiple UAV flights 

enabled contrasting hybrids or cultivars to be differentiated (Figure 4.7). In chapter 2, the GAM 

phenotyped the LAI and LCC dynamics between two hemp cultivars, yellow and green, under four 

nitrogen fertilisation levels and proved to be a useful tool to capture differences of LAI and LCC 
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dynamics throughout the whole growing season. In chapter 4, the GAM applied to time series of 

moisture content estimated-values phenotyped the stay-green trait and captured the differences in the 

senescence dynamics of miscanthus hybrids. 

5.2 Scientific contribution 

The present thesis contributes to improving the knowledge on adopting UAV multispectral remote 

sensing platform for HTP of biomass crops such as hemp and miscanthus and using this to support 

the field trials of breeding programs. The UAV multispectral remote sensing for HTP applications is 

a recent addition in agriculture, and it has already been performed on many crops. However, in this 

thesis, as well as evaluating the feasibility of using UAV-based HTP with hemp and miscanthus, it 

was also used as a tool to characterize the growth and senescence dynamics. Indeed, for the first time, 

it has been shown that the combination of estimation models (ML or inversion of the PROSAIL 

model) and GAM can phenotype the crop traits dynamics throughout the growing season, when 

applied to the time series of hemp and miscanthus trait values estimated from spectral data acquired 

from multiple UAV flights. It seems likely that this combination (UAV, ML or PROSAIL model, and 

GAM) will also be able to be used for the HTP of other crops in future breeding programs.  

Of significant note is that in this thesis, for the first time the topic of UAV multi-sensor 

interoperability was explored; this had previously only been addressed for satellite platforms. This 

topic is very important as there are many UAV multispectral sensors on the market, each with 

different spectral characteristics. The VIs of two different sensors were calculated by resampling the 

reflectance of the canopy, simulated by the PROSAIL model, based on the different characteristics 

of the UAV sensors. The linking procedure used in this study is based on equations calculated through 

linear regression between the MicaSense VIs and the SlantRange VIs. These equations proved to be 

a powerful tool to overcome the issue of multi-sensor interoperability by linking VIs from the UAV 

multispectral sensors.  

Finally, the peak derived from the VIs time series is widely used in satellite remote sensing for yield 

prediction. This thesis explored the potential use of this approach through UAV remote sensing to 

predict the yield of the novel miscanthus hybrids on small plots in field trials that cannot be monitored 

using satellite remote sensing. In addition, to evaluate the operability of the model, so its capability 

to predict the yield months before the harvest, a timeline of the performance of the model using peak 

derived from partial VIS time series was performed. The ability to early predict the yield of novel 

hybrids using UAV makes it a key ally for the establishment of a sustainable value chain based on 

biomass crops. 



Synthesis 

98 

5.3 Future research 

This thesis shows that UAV remote sensing is an important tool for HTP. The capacity to distinguish 

crop traits using UAV remote sensing can help to comprehend the differences between genotypes 

during the growing season. However, this thesis has also highlighted that there is a need for new 

future studies. Future UAV remote sensing studies should focus on evaluating the dynamics of other 

hemp traits such as stem biomass, leaf biomass or nitrogen content during the season. Unlike this 

thesis in which LAI and LCC were evaluated through the inversion of the PROSAIL model using 

UAV multispectral images, future studies could deal with the use of ML models, especially regarding 

traits such as stem, leaf biomass and nitrogen content for which the use of the inversion of the 

PROSAIL model would be unsuitable. Novel miscanthus studies could also be carried out in order to 

extend the RF model transferability for the moisture content estimation at values below 30%. The 

transferability of other machine learning algorithms should also be tested. To improve the miscanthus 

moisture content estimation, future studies could investigate the exploitation of the spectral bands of 

the satellites, such as the SWIR band, known to well predict crop moisture content. The 

methodological approach used in this thesis, which consists of the combination of UAV multiple 

multispectral flights, estimation models and GAM, could be used to estimate these or different traits 

in other crops. Further studies could use this approach to calibrate the input parameters of crop growth 

models or to explore the run-time calibration of models by integrating UAV remote sensing estimates 

of input parameters, as already done with satellite data. 

HTP and yield prediction based on ML algorithms and on UAV remote sensing can improve the 

logistics of biomass supply chain, for supporting breeding programs, and for improving crop 

modelling of novel Miscanthus hybrids.  UAV platforms are suitable tools for HTP applications, as 

they enable the monitoring of small plots or field scale trials with numerous genotypes, due to their 

ability to capture high-resolution images. However, the satellite platforms are more suited for yield 

prediction, as they can collect data of many fields simultaneously and can develop applications to 

predict commercial yield at regional and national scales. Therefore, further studies based on satellite 

remote sensing are needed to predict yield of biomass crops like Miscanthus in order to evaluate their 

potential for commercial scale. 

This thesis used a procedure based on equations derived from the PROSAIL model to link VIs 

calculated from UAV sensors with different spectral characteristics. Although this procedure does 

not consider the light and meteorological conditions during the flights which may affect the quality 

of the spectral data, it proved to be an interesting tool to overcome multi-sensor interoperability 

problems. Future studies could use this procedure to investigate the interoperability problems between 

the several UAV multispectral sensors available on the market. The use of this procedure could be 
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interesting for crop phenotyping, where the field trials are often carried out in multi-location and with 

different UAV sensors. Additionally, the multi-sensor interoperability topic could be relevant in 

future since the UAV scientific studies for agriculture applications are exponentially increasing, the 

UAV market is expanding, and the number of UAV users is constantly growing. Finally, this 

procedure could enable the building and the application of crop traits estimation models based on 

UAV multi-sensor data for developing remote sensing applications beneficial to sustainable crop 

management.

  



 

 

  



 

101 

 

Reference
Adam, E., Mutanga, O., Abdel-Rahman, E. M., & Ismail, R. (2014). Estimating standing biomass in 

papyrus ( Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random 
forest regression. International Journal of Remote Sensing, 35(2), 693–714. 
https://doi.org/10.1080/01431161.2013.870676 

Agostini, A., Serra, P., Giuntoli, J., Martani, E., Ferrarini, A., & Amaducci, S. (2021). Biofuels from 
perennial energy crops on buffer strips: A win-win strategy. Journal of Cleaner Production, 297, 
126703. https://doi.org/10.1016/j.jclepro.2021.126703 

Alam, M. M., Strandgard, M. N., Brown, M. W., & Fox, J. C. (2012). Improving the productivity of 
mechanised harvesting systems using remote sensing. Australian Forestry, 75(4), 238–245. 
https://doi.org/10.1080/00049158.2012.10676408 

Alexandridis, T. K., Ovakoglou, G., & Clevers, J. G. P. W. (2020). Relationship between MODIS 
EVI and LAI across time and space. Geocarto International, 35(13), 1385–1399. 
https://doi.org/10.1080/10106049.2019.1573928 

Ali, A. M., Darvishzadeh, R., Skidmore, A., Gara, T. W., & Heurich, M. (2021). Machine learning 
methods’ performance in radiative transfer model inversion to retrieve plant traits from Sentinel-
2 data of a mixed mountain forest. International Journal of Digital Earth, 14(1), 106–120. 
https://doi.org/10.1080/17538947.2020.1794064 

Amaducci, S., Scordia, D., Liu, F. H., Zhang, Q., Guo, H., Testa, G., & Cosentino, S. L. (2015). Key 
cultivation techniques for hemp in Europe and China. Industrial Crops and Products, 68, 2–16. 
https://doi.org/10.1016/j.indcrop.2014.06.041 

Amaducci, Stefano, Facciotto, G., Bergante, S., Perego, A., Serra, P., Ferrarini, A., & Chimento, C. 
(2017). Biomass production and energy balance of herbaceous and woody crops on marginal 
soils in the Po Valley. GCB Bioenergy, 9(1), 31–45. https://doi.org/10.1111/gcbb.12341 

Anderegg, J., Yu, K., Aasen, H., Walter, A., Liebisch, F., & Hund, A. (2020). Spectral Vegetation 
Indices to Track Senescence Dynamics in Diverse Wheat Germplasm. Frontiers in Plant 

Science, 10, 1749. https://doi.org/10.3389/fpls.2019.01749 

Antonucci, G., Croci, M., Miras-Moreno, B., Fracasso, A., & Amaducci, S. (2021). Integration of 
Gas Exchange With Metabolomics: High-Throughput Phenotyping Methods for Screening 
Biostimulant-Elicited Beneficial Responses to Short-Term Water Deficit. Frontiers in Plant 

Science, 12. https://doi.org/10.3389/fpls.2021.678925 

Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding 
frontier. Trends in Plant Science, 19(1), 52–61. https://doi.org/10.1016/j.tplants.2013.09.008 

Asner, G. P. (1998). Biophysical and Biochemical Sources of Variability in Canopy Reflectance. 
Remote Sensing of Environment, 64(3), 234–253. https://doi.org/10.1016/S0034-
4257(98)00014-5 

Atzberger, C. (2004). Object-based retrieval of biophysical canopy variables using artificial neural 
nets and radiative transfer models. Remote Sensing of Environment, 93(1–2), 53–67. 
https://doi.org/10.1016/j.rse.2004.06.016 

Atzberger, C. (2010). Inverting the PROSAIL canopy reflectance model using neural nets trained on 
streamlined databases. Journal of Spectral Imaging. https://doi.org/10.1255/jsi.2010.a2 

Atzberger, C., Darvishzadeh, R., Immitzer, M., Schlerf, M., Skidmore, A., & le Maire, G. (2015). 
Comparative analysis of different retrieval methods for mapping grassland leaf area index using 



References 

102 

 

airborne imaging spectroscopy. International Journal of Applied Earth Observation and 

Geoinformation, 43, 19–31. https://doi.org/10.1016/j.jag.2015.01.009 

Awty-Carroll, D., Al Hassan, M., Ashman, C., Magenau, E., Martani, E., Kontek, M., van der Pluijm, 
P., de Maupeou, E., McCalmont Chris Davey, J., van der Cruijsen, K., Jurišić, V., Amaducci, 
S., Lamy, I., Kam, J., Hoogendam, A., Dolstra, O., Ferrarini, A., Lewandowski, I., Trindade, L., 
… Clifton-Brown, J. (2022). Establishment and yield performance over three years of fourteen 
inter- and intra-species Miscanthus hybrids planted using novel agronomies at seven European 
sites. GCB Bioenergy, submitted. 

Banerjee, B. P., Joshi, S., Thoday-Kennedy, E., Pasam, R. K., Tibbits, J., Hayden, M., Spangenberg, 
G., & Kant, S. (2020). High-throughput phenotyping using digital and hyperspectral imaging-
derived biomarkers for genotypic nitrogen response. Journal of Experimental Botany, 71(15), 
4604–4615. https://doi.org/10.1093/jxb/eraa143 

Bannari, A., Asalhi, H., & Teillet, P. M. (2002). Transformed difference vegetation index (TDVI) for 
vegetation cover mapping. IEEE International Geoscience and Remote Sensing Symposium, 5, 
3053–3055. https://doi.org/10.1109/IGARSS.2002.1026867 

Baret, F., Jacquemoud, S., Guyot, G., & Leprieur, C. (1992). Modeled analysis of the biophysical 
nature of spectral shifts and comparison with information content of broad bands. Remote 

Sensing of Environment, 41(2–3), 133–142. https://doi.org/10.1016/0034-4257(92)90073-S 

Baret, Frédéric, & Buis, S. (2008). Estimating Canopy Characteristics from Remote Sensing 
Observations: Review of Methods and Associated Problems. In Advances in Land Remote 

Sensing (pp. 173–201). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6450-0_7 

Baret, FrÉderic, & Jacquemoud, S. (1994). Modeling Canopy Spectral Properties to Retrieve 
Biophysical and Biochemical Characteristics. In Imaging Spectrometry — a Tool for 

Environmental Observations (pp. 145–167). Springer Netherlands. https://doi.org/10.1007/978-
0-585-33173-7_9 

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and 
future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. 
https://doi.org/10.1016/j.isprsjprs.2016.01.011 

Berger, K., Atzberger, C., Danner, M., D’Urso, G., Mauser, W., Vuolo, F., Hank, T., D’Urso, G., 
Mauser, W., Vuolo, F., & Hank, T. (2018). Evaluation of the PROSAIL Model Capabilities for 
Future Hyperspectral Model Environments: A Review Study. Remote Sensing, 10(2), 85. 
https://doi.org/10.3390/rs10010085 

Berni, J., Zarco-Tejada, P. J., Suarez, L., & Fereres, E. (2009). Thermal and Narrowband 
Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. 
IEEE Transactions on Geoscience and Remote Sensing, 47(3), 722–738. 
https://doi.org/10.1109/TGRS.2008.2010457 

Biecek, P. (2018). DALEX: moDel Agnostic Language for Exploration and eXplanation. 

Birth, G. S., & McVey, G. R. (1968). Measuring the Color of Growing Turf with a Reflectance 
Spectrophotometer 1. Agronomy Journal, 60(6), 640–643. 
https://doi.org/10.2134/agronj1968.00021962006000060016x 

Blancon, J., Dutartre, D., Tixier, M.-H. H., Weiss, M., Comar, A., Praud, S., & Baret, F. (2019). A 
High-Throughput Model-Assisted Method for Phenotyping Maize Green Leaf Area Index 
Dynamics Using Unmanned Aerial Vehicle Imagery. Frontiers in Plant Science, 10, 685. 
https://doi.org/10.3389/fpls.2019.00685 



References 

103 

Blandinières, H. (2022). Productivity, eco-physiology, and stem processability of a yellow hemp 

(Cannabis sativa L.) cultivar under varying levels of nitrogen fertilisation. 

Boe, A., & Beck, D. L. (2008). Yield Components of Biomass in Switchgrass. Crop Science, 48(4), 
1306–1311. https://doi.org/10.2135/cropsci2007.08.0482 

Boersma, N. N., Dohleman, F. G., Miguez, F. E., & Heaton, E. A. (2015). Autumnal leaf senescence 
in Miscanthus × giganteus and leaf [N] differ by stand age. Journal of Experimental Botany, 
66(14), 4395–4401. https://doi.org/10.1093/jxb/erv129 

Bogard, M., Jourdan, M., Allard, V., Martre, P., Perretant, M. R., Ravel, C., Heumez, E., Orford, S., 
Snape, J., Griffiths, S., Gaju, O., Foulkes, J., & Le Gouis, J. (2011). Anthesis date mainly 
explained correlations between post-anthesis leaf senescence, grain yield, and grain protein 
concentration in a winter wheat population segregating for flowering time QTLs. Journal of 

Experimental Botany, 62(10), 3621–3636. https://doi.org/10.1093/jxb/err061 

Broge, N. ., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and 
hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll 
density. Remote Sensing of Environment, 76(2), 156–172. https://doi.org/10.1016/S0034-
4257(00)00197-8 

Brown, M. E., Pinzon, J. E., Didan, K., Morisette, J. T., & Tucker, C. J. (2006). Evaluation of the 
consistency of long-term NDVI time series derived from AVHRR,SPOT-vegetation, SeaWiFS, 
MODIS, and Landsat ETM+ sensors. IEEE Transactions on Geoscience and Remote Sensing, 
44(7), 1787–1793. https://doi.org/10.1109/TGRS.2005.860205 

Burczyk, H., Grabowska, L., Kołodziej, J., & Strybe, M. (2008). Industrial Hemp as a Raw Material 
for Energy Production. Journal of Industrial Hemp, 13(1), 37–48. 
https://doi.org/10.1080/15377880801898717 

Cabrera-Bosquet, L., Molero, G., Stellacci, A., Bort, J., Nogués, S., & Araus, J. (2011). NDVI as a 
potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes 
subjected to different water and nitrogen conditions. Cereal Research Communications, 39(1), 
147–159. https://doi.org/10.1556/CRC.39.2011.1.15 

Carlsson, G., Mårtensson, L.-M., Prade, T., Svensson, S.-E., & Jensen, E. S. (2017). Perennial species 
mixtures for multifunctional production of biomass on marginal land. GCB Bioenergy, 9(1), 
191–201. https://doi.org/10.1111/gcbb.12373 

Cerrudo, D., González Pérez, L., Mendoza Lugo, J., & Trachsel, S. (2017). Stay-Green and 
Associated Vegetative Indices to Breed Maize Adapted to Heat and Combined Heat-Drought 
Stresses. Remote Sensing, 9(3), 235. https://doi.org/10.3390/rs9030235 

Chen, J. M. (1996). Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal 
Applications. Canadian Journal of Remote Sensing, 22(3), 229–242. 
https://doi.org/10.1080/07038992.1996.10855178 

Christopher, J. T., Veyradier, M., Borrell, A. K., Harvey, G., Fletcher, S., & Chenu, K. (2014). 
Phenotyping novel stay-green traits to capture genetic variation in senescence dynamics. 
Functional Plant Biology, 41(11), 1035. https://doi.org/10.1071/FP14052 

Clifton-Brown, J. C., Breuer, J., & Jones, M. B. (2007). Carbon mitigation by the energy crop, 
Miscanthus. Global Change Biology, 13(11), 2296–2307. https://doi.org/10.1111/j.1365-
2486.2007.01438.x 

Clifton-Brown, J. C. C., & Lewandowski, I. (2002). Screening Miscanthus genotypes in field trials 
to optimise biomass yield and quality in Southern Germany. European Journal of Agronomy, 
16(2), 97–110. https://doi.org/10.1016/S1161-0301(01)00120-4 



References 

104 

 

Clifton-Brown, J. C., Lewandowski, I., Bangerth, F., & Jones, M. B. (2002). Comparative responses 
to water stress in stay-green, rapid- and slow senescing genotypes of the biomass crop, 
Miscanthus. New Phytologist, 154(2), 335–345. https://doi.org/10.1046/J.1469-
8137.2002.00381.X 

Clifton-Brown, J., Hastings, A., Mos, M., McCalmont, J. P., Ashman, C., Awty-Carroll, D., Cerazy, 
J., Chiang, Y.-C., Cosentino, S., Cracroft-Eley, W., Scurlock, J., Donnison, I. S., Glover, C., 
Gołąb, I., Greef, J. M., Gwyn, J., Harding, G., Hayes, C., Helios, W., … Flavell, R. (2017). 
Progress in upscaling Miscanthus biomass production for the European bio-economy with seed-
based hybrids. GCB Bioenergy, 9(1), 6–17. https://doi.org/10.1111/gcbb.12357 

Clifton-Brown, J., Schwarz, K.-U., Awty-Carroll, D., Iurato, A., Meyer, H., Greef, J., Gwyn, J., Mos, 
M., Ashman, C., Hayes, C., Huang, L., Norris, J., Rodgers, C., Scordia, D., Shafiei, R., Squance, 
M., Swaller, T., Youell, S., Cosentino, S., … Robson, P. (2019). Breeding Strategies to Improve 
Miscanthus as a Sustainable Source of Biomass for Bioenergy and Biorenewable Products. 
Agronomy, 9(11), 673. https://doi.org/10.3390/agronomy9110673 

Clifton-Brown, Schwarz, & Hastings. (2015). History of the development of Miscanthus as a 
bioenergy crop: from small beginnings to potential realisation. Biology and Environment: 

Proceedings of the Royal Irish Academy, 115B(1), 45. https://doi.org/10.3318/bioe.2015.05 

Clifton‐Brown, J. C., & Lewandowski, I. (2000). Overwintering problems of newly established 
Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold 
tolerance. New Phytologist, 148(2), 287–294. https://doi.org/10.1046/j.1469-8137.2000.00764.x 

Clifton‐Brown, J. C., Lewandowski, I., Andersson, B., Basch, G., Christian, D. G., Kjeldsen, J. B., 
J⊘rgensen, U., Mortensen, J. V., Riche, A. B., Schwarz, K.-U., Tayebi, K., & Teixeira, F. 
(2001). Performance of 15 Miscanthus Genotypes at Five Sites in Europe. Agronomy Journal, 
93(5), 1013–1019. https://doi.org/10.2134/agronj2001.9351013x 

Clifton‐Brown, J., Harfouche, A., Casler, M. D., Dylan Jones, H., Macalpine, W. J., Murphy‐Bokern, 
D., Smart, L. B., Adler, A., Ashman, C., Awty‐Carroll, D., Bastien, C., Bopper, S., Botnari, V., 
Brancourt‐Hulmel, M., Chen, Z., Clark, L. V., Cosentino, S., Dalton, S., Davey, C., … 
Lewandowski, I. (2019). Breeding progress and preparedness for mass‐scale deployment of 
perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GCB 

Bioenergy, 11(1), 118–151. https://doi.org/10.1111/gcbb.12566 

Crini, G., & Lichtfouse, E. (Eds.). (2020). Sustainable Agriculture Reviews 42 (Vol. 42). Springer 
International Publishing. https://doi.org/10.1007/978-3-030-41384-2 

Crippen, R. (1990). Calculating the vegetation index faster. Remote Sensing of Environment, 34(1), 
71–73. https://doi.org/10.1016/0034-4257(90)90085-Z 

Cui, Z., & Kerekes, J. P. (2018). Potential of Red Edge Spectral Bands in Future Landsat Satellites 
on Agroecosystem Canopy Green Leaf Area Index Retrieval. Remote Sensing, 10(9), 1458. 
https://doi.org/10.3390/rs10091458 

Darvishzadeh, R., Skidmore, A., Schlerf, M., & Atzberger, C. (2008). Inversion of a radiative transfer 
model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote 

Sensing of Environment, 112(5), 2592–2604. https://doi.org/10.1016/j.rse.2007.12.003 

Datt, B. (1999). Remote Sensing of Water Content in Eucalyptus Leaves. Australian Journal of 

Botany, 47(6), 909. https://doi.org/10.1071/BT98042 

Dauber, J., Brown, C., Fernando, A. L., Finnan, J., Krasuska, E., Ponitka, J., Styles, D., Thrän, D., 
Van Groenigen, K. J., Weih, M., & Zah, R. (2012). Bioenergy from “surplus” land: 
environmental and socio-economic implications. BioRisk, 7, 5–50. 



References 

105 

https://doi.org/10.3897/biorisk.7.3036 

Daughtry, C. S. T., Walthall, C. L., Kim, M. S., De Colstoun, E. B., & McMurtrey, J. E. (2000). 
Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote 

Sensing of Environment, 74(2), 229–239. https://doi.org/10.1016/S0034-4257(00)00113-9 

de Beurs, K. M., & Henebry, G. M. (2005). Land surface phenology and temperature variation in the 
International Geosphere-Biosphere Program high-latitude transects. Global Change Biology, 
11(5), 779–790. https://doi.org/10.1111/j.1365-2486.2005.00949.x 

de Beurs, K. M., & Henebry, G. M. (2010). Spatio-Temporal Statistical Methods for Modelling Land 
Surface Phenology. In Phenological Research (pp. 177–208). Springer Netherlands. 
https://doi.org/10.1007/978-90-481-3335-2_9 

de Castro, A. I., Shi, Y., Maja, J. M., & Peña, J. M. (2021). UAVs for Vegetation Monitoring: 
Overview and Recent Scientific Contributions. Remote Sensing 2021, Vol. 13, Page 2139, 
13(11), 2139. https://doi.org/10.3390/RS13112139 

de Wit, A. J. W., & van Diepen, C. A. (2008). Crop growth modelling and crop yield forecasting 
using satellite-derived meteorological inputs. International Journal of Applied Earth 

Observation and Geoinformation, 10(4), 414–425. https://doi.org/10.1016/j.jag.2007.10.004 

Doktor, D., Lausch, A., Spengler, D., & Thurner, M. (2014). Extraction of Plant Physiological Status 
from Hyperspectral Signatures Using Machine Learning Methods. Remote Sensing, 6(12), 
12247–12274. https://doi.org/10.3390/rs61212247 

Duan, B., Liu, Y., Gong, Y., Peng, Y., Wu, X., Zhu, R., & Fang, S. (2019). Remote estimation of rice 
LAI based on Fourier spectrum texture from UAV image. Plant Methods, 15(1), 124. 
https://doi.org/10.1186/s13007-019-0507-8 

Duan, S.-B. B., Li, Z.-L. L., Wu, H., Tang, B.-H. H., Ma, L., Zhao, E., & Li, C. (2014). Inversion of 
the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from 
unmanned aerial vehicle hyperspectral data. International Journal of Applied Earth Observation 

and Geoinformation, 26(1), 12–20. https://doi.org/10.1016/j.jag.2013.05.007 

Eitel, J. U. H., Long, D. S., Gessler, P. E., & Smith, A. M. S. (2007). Using in‐situ measurements to 
evaluate the new RapidEye TM satellite series for prediction of wheat nitrogen status. 
International Journal of Remote Sensing, 28(18), 4183–4190. 
https://doi.org/10.1080/01431160701422213 

Emilien, A.-V., Thomas, C., & Thomas, H. (2021). UAV &amp; satellite synergies for optical remote 
sensing applications: A literature review. Science of Remote Sensing, 3, 100019. 
https://doi.org/10.1016/j.srs.2021.100019 

Escadafal, R., & Huete, A. (1991). Improvement in remote sensing of low vegetation cover in arid 
regions by correcting vegetation indices for soil “noise.” Comptes Rendus de l’Academie Des 

Sciences. 

Evans, F. H., & Shen, J. (2021). Long-Term Hindcasts of Wheat Yield in Fields Using Remotely 
Sensed Phenology, Climate Data and Machine Learning. Remote Sensing 2021, Vol. 13, Page 

2435, 13(13), 2435. https://doi.org/10.3390/RS13132435 

Farrell, A. D., Clifton-Brown, J. C., Lewandowski, I., & Jones, M. B. (2006). Genotypic variation in 
cold tolerance influences the yield of Miscanthus. Annals of Applied Biology, 149(3), 337–345. 
https://doi.org/10.1111/j.1744-7348.2006.00099.x 

Fei, Y., Jiulin, S., Hongliang, F., Zuofang, Y., Jiahua, Z., Yunqiang, Z., Kaishan, S., Zongming, W., 
& Maogui, H. (2012). Comparison of different methods for corn LAI estimation over 
northeastern China. International Journal of Applied Earth Observation and Geoinformation, 



References 

106 

 

18, 462–471. https://doi.org/10.1016/j.jag.2011.09.004 

Feng, Lei, Chen, S., Zhang, C., Zhang, Y., & He, Y. (2021). A comprehensive review on recent 
applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput 
plant phenotyping. Computers and Electronics in Agriculture, 182, 106033. 
https://doi.org/10.1016/J.COMPAG.2021.106033 

Feng, Luwei, Zhang, Z., Ma, Y., Du, Q., Williams, P., Drewry, J., & Luck, B. (2020). Alfalfa Yield 
Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sensing, 
12(12), 2028. https://doi.org/10.3390/rs12122028 

Ferchichi, A., Abbes, A. Ben, Barra, V., & Farah, I. R. (2022). Forecasting vegetation indices from 
spatio-temporal remotely sensed data using deep learning-based approaches: A systematic 
literature review. Ecological Informatics, 101552. https://doi.org/10.1016/j.ecoinf.2022.101552 

Ferrarini, A., Martani, E., Fornasier, F., & Amaducci, S. (2021). High C input by perennial energy 
crops boosts belowground functioning and increases soil organic P content. Agriculture, 

Ecosystems & Environment, 308, 107247. https://doi.org/10.1016/j.agee.2020.107247 

Ferrarini, Andrea, Fornasier, F., Serra, P., Ferrari, F., Trevisan, M., & Amaducci, S. (2017). Impacts 
of willow and miscanthus bioenergy buffers on biogeochemical N removal processes along the 
soil-groundwater continuum. GCB Bioenergy, 9(1), 246–261. 
https://doi.org/10.1111/gcbb.12340 

Fonteyne, S., Roldán-Ruiz, I., Muylle, H., De Swaef, T., Reheul, D., & Lootens, P. (2016). A Review 
of Frost and Chilling Stress in Miscanthus and Its Importance to Biomass Yield. In Perennial 

Biomass Crops for a Resource-Constrained World (pp. 127–144). Springer International 
Publishing. https://doi.org/10.1007/978-3-319-44530-4_12 

Fritsche, U. R., Sims, R. E. H., & Monti, A. (2010). Direct and indirect land-use competition issues 
for energy crops and their sustainable production - an overview. Biofuels, Bioproducts and 

Biorefining, 4(6), 692–704. https://doi.org/10.1002/bbb.258 

Furbank, R. T., & Tester, M. (2011). Phenomics – technologies to relieve the phenotyping bottleneck. 
Trends in Plant Science, 16(12), 635–644. https://doi.org/10.1016/j.tplants.2011.09.005 

Gallo, K., Ji, L., Reed, B., Eidenshink, J., & Dwyer, J. (2005). Multi-platform comparisons of MODIS 
and AVHRR normalized difference vegetation index data. Remote Sensing of Environment, 
99(3), 221–231. https://doi.org/10.1016/j.rse.2005.08.014 

Gao, B. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid 
water from space. Remote Sensing of Environment, 58(3), 257–266. 
https://doi.org/10.1016/S0034-4257(96)00067-3 

Gelfand, I., Sahajpal, R., Zhang, X., Izaurralde, R. C., Gross, K. L., & Robertson, G. P. (2013). 
Sustainable bioenergy production from marginal lands in the US Midwest. Nature, 493(7433), 
514–517. https://doi.org/10.1038/nature11811 

Gevaert, C. M., Suomalainen, J., Tang, J., & Kooistra, L. (2015). Generation of Spectral–Temporal 
Response Surfaces by Combining Multispectral Satellite and Hyperspectral UAV Imagery for 
Precision Agriculture Applications. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 8(6), 3140–3146. 
https://doi.org/10.1109/JSTARS.2015.2406339 

Gitelson, A. A. (2004). Wide Dynamic Range Vegetation Index for Remote Quantification of 
Biophysical Characteristics of Vegetation. Journal of Plant Physiology, 161(2), 165–173. 
https://doi.org/10.1078/0176-1617-01176 



References 

107 

Gitelson, A. A., Gritz †, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll 
content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in 
higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. 
https://doi.org/10.1078/0176-1617-00887 

Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing 
of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298. 
https://doi.org/10.1016/S0034-4257(96)00072-7 

Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote 
estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76–87. 
https://doi.org/10.1016/S0034-4257(01)00289-9 

Gitelson, A. A., Keydan, G. P., & Merzlyak, M. N. (2006). Three‐band model for noninvasive 
estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. 
Geophysical Research Letters, 33(11), 2006GL026457. https://doi.org/10.1029/2006GL026457 

Gitelson, A., & Merzlyak, M. N. (1994). Quantitative estimation of chlorophyll-a using reflectance 
spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and 

Photobiology B: Biology, 22(3), 247–252. https://doi.org/10.1016/1011-1344(93)06963-4 

Gracia-Romero, A., Kefauver, S. C., Fernandez-Gallego, J. A., Vergara-Díaz, O., Nieto-Taladriz, M. 
T., & Araus, J. L. (2019). UAV and Ground Image-Based Phenotyping: A Proof of Concept with 
Durum Wheat. Remote Sensing, 11(10), 1244. https://doi.org/10.3390/rs11101244 

Guillen-Climent, M. L., Zarco-Tejada, P. J., & Villalobos, F. J. (2014). Estimating Radiation 
Interception in Heterogeneous Orchards Using High Spatial Resolution Airborne Imagery. IEEE 

Geoscience and Remote Sensing Letters, 11(2), 579–583. 
https://doi.org/10.1109/LGRS.2013.2284660 

Guo, W., Carroll, M. E., Singh, A., Swetnam, T. L., Merchant, N., Sarkar, S., Singh, A. K., & 
Ganapathysubramanian, B. (2021). UAS-Based Plant Phenotyping for Research and Breeding 
Applications. Plant Phenomics, 2021, 1–21. https://doi.org/10.34133/2021/9840192 

Guo, Y., Senthilnath, J., Wu, W., Zhang, X., Zeng, Z., & Huang, H. (2019). Radiometric Calibration 
for Multispectral Camera of Different Imaging Conditions Mounted on a UAV Platform. 
Sustainability, 11(4), 978. https://doi.org/10.3390/su11040978 

Haboudane, D, Miller, J. R., Pattey, E., Zarco-Tehada, P. J., & Strachan, I. B. (2004). Hyperspectral 
vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling 
and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 
337–352. https://doi.org/10.1016/j.rse.2003.12.013 

Haboudane, Driss, Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated 
narrow-band vegetation indices for prediction of crop chlorophyll content for application to 
precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426. 
https://doi.org/10.1016/S0034-4257(02)00018-4 

Hamada, Y., Zumpf, C. R., Cacho, J. F., Lee, D., Lin, C.-H., Boe, A., Heaton, E., Mitchell, R., Negri, 
M. C., Rescia, A., & Gmada, S. S. (2021). Remote Sensing-Based Estimation of Advanced 
Perennial Grass Biomass Yields for Bioenergy. Land, 10(11), 1221. 
https://doi.org/10.3390/land10111221 

Han-Ya, I., Ishii, K., & Noguchi, N. (2010). Satellite and Aerial Remote Sensing for Production 
Estimates and Crop Assessment. Environment Control in Biology, 48(2), 51–58. 
https://doi.org/10.2525/ecb.48.51 

Han, L., Yang, G., Dai, H., Xu, B., Yang, H., Feng, H., Li, Z., & Yang, X. (2019). Modeling maize 
above-ground biomass based on machine learning approaches using UAV remote-sensing data. 



References 

108 

 

Plant Methods, 15(1), 10. https://doi.org/10.1186/s13007-019-0394-z 

Hassan, M., Yang, M., Rasheed, A., Jin, X., Xia, X., Xiao, Y., & He, Z. (2018). Time-Series 
Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread 
Wheat. Remote Sensing, 10(6), 809. https://doi.org/10.3390/rs10060809 

Hastings, A., Clifton-Brown, J., Wattenbach, M., Mitchell, C. P., & Smith, P. (2009). The 
development of MISCANFOR, a new Miscanthus crop growth model: towards more robust 
yield predictions under different climatic and soil conditions. GCB Bioenergy, 1(2), 154–170. 
https://doi.org/10.1111/j.1757-1707.2009.01007.x 

Hastings, A., Mos, M., Yesufu, J. A., McCalmont, J., Schwarz, K., Shafei, R., Ashman, C., Nunn, C., 
Schuele, H., Cosentino, S., Scalici, G., Scordia, D., Wagner, M., & Clifton-Brown, J. (2017). 
Economic and Environmental Assessment of Seed and Rhizome Propagated Miscanthus in the 
UK. Frontiers in Plant Science, 8, 1058. https://doi.org/10.3389/fpls.2017.01058 

Heaton, E. A., Dohleman, F. G., Miguez, A. F., Juvik, J. A., Lozovaya, V., Widholm, J., Zabotina, 
O. A., McIsaac, G. F., David, M. B., Voigt, T. B., Boersma, N. N., & Long, S. P. (2010). 
Miscanthus (pp. 75–137). https://doi.org/10.1016/B978-0-12-381518-7.00003-0 

Henner, D. N., Hastings, A., Pogson, M., McNamara, N. P., Davies, C. A., & Smith, P. (2020). 
PopFor: A new model for estimating poplar yields. Biomass and Bioenergy, 134, 105470. 
https://doi.org/10.1016/j.biombioe.2020.105470 

Herppich, W. B., Gusovius, H.-J., Flemming, I., & Drastig, K. (2020). Effects of Drought and Heat 
on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at 
a Poor-Soil Site in Brandenburg (Germany). Agronomy, 10(9), 1361. 
https://doi.org/10.3390/agronomy10091361 

Hodkinson, T. R., Chase, M. W., & Renvoize, S. A. (2002). Characterization of a Genetic Resource 
Collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. 
Annals of Botany, 89(5), 627–636. https://doi.org/10.1093/aob/mcf091 

Holloway, J., & Mengersen, K. (2018). Statistical Machine Learning Methods and Remote Sensing 
for Sustainable Development Goals: A Review. Remote Sensing, 10(9), 1365. 
https://doi.org/10.3390/rs10091365 

Hoque, M. A.-A., & Phinn, S. (2018). Methods for Linking Drone and Field Hyperspectral Data to 
Satellite Data. In Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for 

Vegetation (pp. 321–354). CRC Press. https://doi.org/10.1201/9781315164151-12 

Huete, A. . (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 
295–309. https://doi.org/10.1016/0034-4257(88)90106-X 

Huete, A., Didan, K., Miura, T., Rodriguez, E. ., Gao, X., & Ferreira, L. . (2002). Overview of the 
radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of 

Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2 

Hunt, E. R., Daughtry, C. S. T., Eitel, J. U. H., & Long, D. S. (2011). Remote Sensing Leaf 
Chlorophyll Content Using a Visible Band Index. Agronomy Journal, 103(4), 1090–1099. 
https://doi.org/10.2134/agronj2010.0395 

Hunt, M. L., Blackburn, G. A., Carrasco, L., Redhead, J. W., & Rowland, C. S. (2019). High 
resolution wheat yield mapping using Sentinel-2. Remote Sensing of Environment, 233, 111410. 
https://doi.org/10.1016/j.rse.2019.111410 

Im, J., Jensen, J. R., Coleman, M., & Nelson, E. (2009). Hyperspectral remote sensing analysis of 
short rotation woody crops grown with controlled nutrient and irrigation treatments. Geocarto 



References 

109 

International, 24(4), 293–312. https://doi.org/10.1080/10106040802556207 

Impollonia, G., Croci, M., Martani, E., Ferrarini, A., Kam, J., Trindade, L. M., Clifton-Brown, J., & 
Amaducci, S. (2022). Moisture content estimation and senescence phenotyping of novel 
Miscanthus hybrids combining UAV based remote sensing and machine learning. GCB 

Bioenergy, submitted. 

Ivonyi, I., Zolton, I., & van der Werf, H. M. G. (1997). Influence of nitrogen supply and P and K 
levels of the soil on dry matter and nutrient accumulation of fiber hemp (Cannabis sativa L.). 
Journal of the International Hemp Association. 

Jackson, T. J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., Doriaswamy, P., & Hunt, E. 
R. (2004). Vegetation water content mapping using Landsat data derived normalized difference 
water index for corn and soybeans. Remote Sensing of Environment, 92(4), 475–482. 
https://doi.org/10.1016/j.rse.2003.10.021 

Jacquemoud, S., & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote 

Sensing of Environment, 34(2), 75–91. https://doi.org/10.1016/0034-4257(90)90100-Z 

Jacquemoud, Stéphane, Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J., Asner, G. P., 
François, C., & Ustin, S. L. (2009). PROSPECT+SAIL models: A review of use for vegetation 
characterization. Remote Sensing of Environment, 113, S56–S66. 
https://doi.org/10.1016/j.rse.2008.01.026 

Jay, S., Maupas, F., Bendoula, R., & Gorretta, N. (2017). Retrieving LAI, chlorophyll and nitrogen 
contents in sugar beet crops from multi-angular optical remote sensing: Comparison of 
vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Research, 210, 
33–46. https://doi.org/10.1016/j.fcr.2017.05.005 

Jensen, E., Robson, P., Farrar, K., Thomas Jones, S., Clifton-Brown, J., Payne, R., Donnison, I., 
Jones, S. T., Clifton-Brown, J., Payne, R., & Donnison, I. (2017). Towards Miscanthus 
combustion quality improvement: the role of flowering and senescence. GCB Bioenergy, 9(5), 
891–908. https://doi.org/10.1111/gcbb.12391 

Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler, E. E., Timlin, D. J., Shim, 
K.-M., Gerber, J. S., Reddy, V. R., & Kim, S.-H. (2016). Random Forests for Global and 
Regional Crop Yield Predictions. PLOS ONE, 11(6), e0156571. 
https://doi.org/10.1371/journal.pone.0156571 

Jeżowski, S. (2008). Yield traits of six clones of Miscanthus in the first 3 years following planting in 
Poland. Industrial Crops and Products, 27(1), 65–68. 
https://doi.org/10.1016/j.indcrop.2007.07.013 

Ji, Z., Pan, Y., Zhu, X., Wang, J., & Li, Q. (2021). Prediction of Crop Yield Using Phenological 
Information Extracted from Remote Sensing Vegetation Index. Sensors, 21(4), 1406. 
https://doi.org/10.3390/s21041406 

Jiang, Z., Huete, A., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation 
index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845. 
https://doi.org/10.1016/j.rse.2008.06.006 

Jin, S., Su, Y., Gao, S., Hu, T., Liu, J., & Guo, Q. (2018). The Transferability of Random Forest in 
Canopy Height Estimation from Multi-Source Remote Sensing Data. Remote Sensing, 10(8), 
1183. https://doi.org/10.3390/rs10081183 

Johansen, K., Morton, M. J. L., Malbeteau, Y., Aragon, B., Al-Mashharawi, S., Ziliani, M. G., Angel, 
Y., Fiene, G., Negrão, S., Mousa, M. A. A., Tester, M. A., & McCabe, M. F. (2020). Predicting 
Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random 
Forest. Frontiers in Artificial Intelligence, 3, 28. https://doi.org/10.3389/frai.2020.00028 



References 

110 

 

Jones, M. B., Zimmermann, J., & Clifton-Brown, J. (2016). Long-Term Yields and Soil Carbon 
Sequestration from Miscanthus: A Review. In Perennial Biomass Crops for a Resource-

Constrained World (pp. 43–49). Springer International Publishing. https://doi.org/10.1007/978-
3-319-44530-4_4 

Jones, Michael B., Finnan, J., & Hodkinson, T. R. (2015). Morphological and physiological traits for 
higher biomass production in perennial rhizomatous grasses grown on marginal land. GCB 

Bioenergy, 7(2), 375–385. https://doi.org/10.1111/gcbb.12203 

Jongschaap, R. E. E. (2006). Run-time calibration of simulation models by integrating remote sensing 
estimates of leaf area index and canopy nitrogen. European Journal of Agronomy, 24(4), 316–
324. https://doi.org/10.1016/j.eja.2005.10.009 

Kamir, E., Waldner, F., & Hochman, Z. (2020). Estimating wheat yields in Australia using climate 
records, satellite image time series and machine learning methods. ISPRS Journal of 

Photogrammetry and Remote Sensing, 160, 124–135. 
https://doi.org/10.1016/j.isprsjprs.2019.11.008 

Kang, S., Post, W. M., Nichols, J. A., Wang, D., West, T. O., Bandaru, V., & Izaurralde, R. C. (2013). 
Marginal Lands: Concept, Assessment and Management. Journal of Agricultural Science, 5(5). 
https://doi.org/10.5539/jas.v5n5p129 

Kavats, O., Khramov, D., Sergieieva, K., & Vasyliev, V. (2019). Monitoring Harvesting by Time 
Series of Sentinel-1 SAR Data. Remote Sensing, 11(21), 2496. 
https://doi.org/10.3390/rs11212496 

Keating, B. ., Carberry, P. ., Hammer, G. ., Probert, M. ., Robertson, M. ., Holzworth, D., Huth, N. ., 
Hargreaves, J. N. ., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J. ., 
Silburn, M., Wang, E., Brown, S., Bristow, K. ., Asseng, S., … Smith, C. . (2003). An overview 
of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 
18(3–4), 267–288. https://doi.org/10.1016/S1161-0301(02)00108-9 

Kim, Y., Huete, A. ., Miura, T., & Jiang, Z. (2010). Spectral compatibility of vegetation indices across 
sensors: band decomposition analysis with Hyperion data. Journal of Applied Remote Sensing, 
4(1), 043520. https://doi.org/10.1117/1.3400635 

Kipp, S., Mistele, B., & Schmidhalter, U. (2014). Identification of stay-green and early senescence 
phenotypes in high-yielding winter wheat, and their relationship to grain yield and grain protein 
concentration using high-throughput phenotyping techniques. Functional Plant Biology, 41(3), 
227. https://doi.org/10.1071/FP13221 

Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical 

Software, 28(5). https://doi.org/10.18637/jss.v028.i05 

Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer New York. 
https://doi.org/10.1007/978-1-4614-6849-3 

Laliberte, A. S., Goforth, M. A., Steele, C. M., & Rango, A. (2011). Multispectral Remote Sensing 
from Unmanned Aircraft: Image Processing Workflows and Applications for Rangeland 
Environments. Remote Sensing, 3(11), 2529–2551. https://doi.org/10.3390/rs3112529 

Larsen, S. U., Jørgensen, U., Kjeldsen, J. B., & Lærke, P. E. (2014). Long-Term Miscanthus Yields 
Influenced by Location, Genotype, Row Distance, Fertilization and Harvest Season. BioEnergy 

Research, 7(2), 620–635. https://doi.org/10.1007/s12155-013-9389-1 

Lehnert, L. W., Meyer, H., Obermeier, W. A., Silva, B., Regeling, B., & Bendix, J. (2019). 
Hyperspectral Data Analysis in R : The hsdar Package. Journal of Statistical Software, 89(12). 



References 

111 

https://doi.org/10.18637/jss.v089.i12 

Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O., & Huisman, W. (2000). Miscanthus: 
European experience with a novel energy crop. Biomass and Bioenergy, 19(4), 209–227. 
https://doi.org/10.1016/S0961-9534(00)00032-5 

Lewandowski, Iris, Clifton-Brown, J., Trindade, L. M., van der Linden, G. C., Schwarz, K.-U. U., 
Müller-Sämann, K., Anisimov, A., Chen, C.-L. L., Dolstra, O., Donnison, I. S., Farrar, K., 
Fonteyne, S., Harding, G., Hastings, A., Huxley, L. M., Iqbal, Y., Khokhlov, N., Kiesel, A., 
Lootens, P., … Kalinina, O. (2016). Progress on Optimizing Miscanthus Biomass Production 
for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Frontiers in Plant 

Science, 7(NOVEMBER2016), 1620. https://doi.org/10.3389/fpls.2016.01620 

Li, F., Piasecki, C., Millwood, R. J., Wolfe, B., Mazarei, M., & Stewart, C. N. (2020). High-
Throughput Switchgrass Phenotyping and Biomass Modeling by UAV. Frontiers in Plant 

Science, 11, 1532. https://doi.org/10.3389/fpls.2020.574073 

Li, H., Yang, W., Lei, J., She, J., & Zhou, X. (2021). Estimation of leaf water content from 
hyperspectral data of different plant species by using three new spectral absorption indices. 
PLOS ONE, 16(3), e0249351. https://doi.org/10.1371/journal.pone.0249351 

Li, P., Jiang, L., & Feng, Z. (2013). Cross-Comparison of Vegetation Indices Derived from Landsat-
7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) 
Sensors. Remote Sensing, 6(1), 310–329. https://doi.org/10.3390/rs6010310 

Liebisch, F., Kirchgessner, N., Schneider, D., Walter, A., & Hund, A. (2015). Remote, aerial 
phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods, 11(1), 9. 
https://doi.org/10.1186/s13007-015-0048-8 

Liedtke, J. D., Hunt, C. H., George-Jaeggli, B., Laws, K., Watson, J., Potgieter, A. B., Cruickshank, 
A., & Jordan, D. R. (2020). High-Throughput Phenotyping of Dynamic Canopy Traits 
Associated with Stay-Green in Grain Sorghum. Plant Phenomics, 2020, 1–10. 
https://doi.org/10.34133/2020/4635153 

Liu, J., Shang, J., Qian, B., Huffman, T., Zhang, Y., Dong, T., Jing, Q., & Martin, T. (2019). Crop 
Yield Estimation Using Time-Series MODIS Data and the Effects of Cropland Masks in Ontario, 
Canada. Remote Sensing, 11(20), 2419. https://doi.org/10.3390/rs11202419 

Lopes, M. S., & Reynolds, M. P. (2012). Stay-green in spring wheat can be determined by spectral 
reflectance measurements (normalized difference vegetation index) independently from 
phenology. Journal of Experimental Botany, 63(10), 3789–3798. 
https://doi.org/10.1093/jxb/ers071 

Lv, Z., Meng, R., Man, J., Zeng, L., Wang, M., Xu, B., Gao, R., Sun, R., & Zhao, F. (2021). Modeling 
of winter wheat fAPAR by integrating Unmanned Aircraft Vehicle-based optical, structural and 
thermal measurement. International Journal of Applied Earth Observation and Geoinformation, 
102, 102407. https://doi.org/10.1016/j.jag.2021.102407 

Machwitz, M., Pieruschka, R., Berger, K., Schlerf, M., Aasen, H., Fahrner, S., Jiménez-Berni, J., 
Baret, F., & Rascher, U. (2021). Bridging the Gap Between Remote Sensing and Plant 
Phenotyping—Challenges and Opportunities for the Next Generation of Sustainable 
Agriculture. Frontiers in Plant Science, 0, 2334. https://doi.org/10.3389/FPLS.2021.749374 

MacKerron, D. K. L., & Haverkort, A. J. (Eds.). (2004). Decision support systems in potato 

production. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-527-7 

Magenau, E., Clifton-Brown, J., Awty-Carroll, D., Ashman, C., Ferrarini, A., Kontek, M., Martani, 
E., Roderick, K., Davey, C., Amaducci, S., Jurišić, V., Kam, J., Trindade, L., Lewandowski, I., 
& Kiesel, A. (2022). Site impacts nutrient translocation efficiency in intra- and interspecies 



References 

112 

 

Miscanthus hybrids on marginal lands. GCB Bioenergy, submitted. 

Makanza, R., Zaman-Allah, M., Cairns, J., Magorokosho, C., Tarekegne, A., Olsen, M., & Prasanna, 
B. (2018). High-Throughput Phenotyping of Canopy Cover and Senescence in Maize Field 
Trials Using Aerial Digital Canopy Imaging. Remote Sensing, 10(2), 330. 
https://doi.org/10.3390/rs10020330 

Malinowska, M., Donnison, I. S., & Robson, P. R. H. (2017). Phenomics analysis of drought 
responses in Miscanthus collected from different geographical locations. GCB Bioenergy, 9(1), 
78–91. https://doi.org/10.1111/gcbb.12350 

Marques Ramos, A. P., Prado Osco, L., Elis Garcia Furuya, D., Nunes Gonçalves, W., Cordeiro 
Santana, D., Pereira Ribeiro Teodoro, L., Antonio da Silva Junior, C., Fernando Capristo-Silva, 
G., Li, J., Henrique Rojo Baio, F., Marcato Junior, J., Eduardo Teodoro, P., & Pistori, H. (2020). 
A random forest ranking approach to predict yield in maize with uav-based vegetation spectral 
indices. Computers and Electronics in Agriculture, 178, 105791. 
https://doi.org/10.1016/j.compag.2020.105791 

Martani, E., Ferrarini, A., Serra, P., Pilla, M., Marcone, A., & Amaducci, S. (2021). Belowground 
biomass C outweighs soil organic C of perennial energy crops: Insights from a long‐term 
multispecies trial. GCB Bioenergy, 13(3), 459–472. https://doi.org/10.1111/gcbb.12785 

Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification 
in remote sensing: an applied review. International Journal of Remote Sensing, 39(9), 2784–
2817. https://doi.org/10.1080/01431161.2018.1433343 

Mayer, Z. (2019). A Brief Introduction to caretEnsemble. 

McCalmont, J. P., Hastings, A., McNamara, N. P., Richter, G. M., Robson, P., Donnison, I. S., & 
Clifton-Brown, J. (2017). Environmental costs and benefits of growing Miscanthus for 
bioenergy in the UK. GCB Bioenergy, 9(3), 489–507. https://doi.org/10.1111/gcbb.12294 

Mehmood, M. A., Ibrahim, M., Rashid, U., Nawaz, M., Ali, S., Hussain, A., & Gull, M. (2017). 
Biomass production for bioenergy using marginal lands. Sustainable Production and 

Consumption, 9, 3–21. https://doi.org/10.1016/j.spc.2016.08.003 

Meijer, W. J. M., van der Werf, H. M. G., Mathijssen, E. W. J. M., & van den Brink, P. W. M. (1995). 
Constraints to dry matter production in fibre hemp (Cannabis sativa L.). European Journal of 

Agronomy, 4(1), 109–117. https://doi.org/10.1016/S1161-0301(14)80022-1 

Meroni, M., Atzberger, C., Vancutsem, C., Gobron, N., Baret, F., Lacaze, R., Eerens, H., & Leo, O. 
(2013). Evaluation of Agreement Between Space Remote Sensing SPOT-VEGETATION 
fAPAR Time Series. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 1951–1962. 
https://doi.org/10.1109/TGRS.2012.2212447 

Meroni, M., Colombo, R., & Panigada, C. (2004). Inversion of a radiative transfer model with 
hyperspectral observations for LAI mapping in poplar plantations. Remote Sensing of 

Environment, 92(2), 195–206. https://doi.org/10.1016/j.rse.2004.06.005 

Meroni, Michele, d’Andrimont, R., Vrieling, A., Fasbender, D., Lemoine, G., Rembold, F., Seguini, 
L., & Verhegghen, A. (2021). Comparing land surface phenology of major European crops as 
derived from SAR and multispectral data of Sentinel-1 and -2. Remote Sensing of Environment, 
253, 112232. https://doi.org/10.1016/J.RSE.2020.112232 

Meroni, Michele, Waldner, F., Seguini, L., Kerdiles, H., & Rembold, F. (2021). Yield forecasting 
with machine learning and small data: What gains for grains? Agricultural and Forest 

Meteorology, 308–309, 108555. https://doi.org/10.1016/j.agrformet.2021.108555 



References 

113 

Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., & Rakitin, V. Y. (1999). Non-destructive 
optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia 

Plantarum, 106(1), 135–141. https://doi.org/10.1034/j.1399-3054.1999.106119.x 

Millard, K., & Richardson, M. (2015). On the Importance of Training Data Sample Selection in 
Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping. Remote 

Sensing, 7(7), 8489–8515. https://doi.org/10.3390/rs70708489 

Miura, T., Yoshioka, H., Fujiwara, K., & Yamamoto, H. (2008). Inter-Comparison of ASTER and 
MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to 
Natural Resource Monitoring. Sensors, 8(4), 2480–2499. https://doi.org/10.3390/s8042480 

Montazeaud, G., Karatoğma, H., Özturk, I., Roumet, P., Ecarnot, M., Crossa, J., Özer, E., Özdemir, 
F., & Lopes, M. S. (2016). Predicting wheat maturity and stay–green parameters by modeling 
spectral reflectance measurements and their contribution to grain yield under rainfed conditions. 
Field Crops Research, 196, 191–198. https://doi.org/10.1016/j.fcr.2016.06.021 

Munaiz, E. D., Martínez, S., Kumar, A., Caicedo, M., & Ordás, B. (2020). The Senescence (Stay-
Green)—An Important Trait to Exploit Crop Residuals for Bioenergy. Energies, 13(4), 790. 
https://doi.org/10.3390/en13040790 

Nolè, A., Rita, A., Ferrara, A. M. S., & Borghetti, M. (2018). Effects of a large-scale late spring frost 
on a beech (Fagus sylvatica L.) dominated Mediterranean mountain forest derived from the 
spatio-temporal variations of NDVI. Annals of Forest Science, 75(3), 83. 
https://doi.org/10.1007/s13595-018-0763-1 

Nunn, C., Hastings, A. F. S. J., Kalinina, O., Özgüven, M., Schüle, H., Tarakanov, I. G., Van Der 
Weijde, T., Anisimov, A. A., Iqbal, Y., Kiesel, A., Khokhlov, N. F., McCalmont, J. P., Meyer, 
H., Mos, M., Schwarz, K.-U., Trindade, L. M., Lewandowski, I., & Clifton-Brown, J. C. (2017). 
Environmental Influences on the Growing Season Duration and Ripening of Diverse Miscanthus 
Germplasm Grown in Six Countries. Frontiers in Plant Science, 8, 907. 
https://doi.org/10.3389/fpls.2017.00907 

Ostos-Garrido, F. J., de Castro, A. I., Torres-Sánchez, J., Pistón, F., & Peña, J. M. (2019). High-
Throughput Phenotyping of Bioethanol Potential in Cereals Using UAV-Based Multi-Spectral 
Imagery. Frontiers in Plant Science, 10, 948. https://doi.org/10.3389/fpls.2019.00948 

Pancaldi, F., & Trindade, L. M. (2020). Marginal Lands to Grow Novel Bio-Based Crops: A Plant 
Breeding Perspective. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00227 

Parmley, K. A., Higgins, R. H., Ganapathysubramanian, B., Sarkar, S., & Singh, A. K. (2019). 
Machine Learning Approach for Prescriptive Plant Breeding. Scientific Reports, 9(1), 17132. 
https://doi.org/10.1038/s41598-019-53451-4 

Peng, B., Guan, K., Pan, M., & Li, Y. (2018). Benefits of Seasonal Climate Prediction and Satellite 
Data for Forecasting U.S. Maize Yield. Geophysical Research Letters, 45(18), 9662–9671. 
https://doi.org/10.1029/2018GL079291 

Penuelas, J., Baret, F., & Filella, I. (1995). Semi-empirical indices to assess carotenoids/chlorophyll 
a ratio from leaf spectral reflectance. Photosynthetica. 

Peñuelas, J., & Inoue, Y. (1999). Reflectance Indices Indicative of Changes in Water and Pigment 
Contents of Peanut and Wheat Leaves. Photosynthetica, 36(3), 355–360. 
https://doi.org/10.1023/A:1007033503276 

Piotrowski, S., Carus, M., & Essel, R. (2015). Global Bioeconomy in the Conflict Between Biomass 
Supply and Demand. Industrial Biotechnology, 11(6), 308–315. 
https://doi.org/10.1089/ind.2015.29021.stp 



References 

114 

 

Potgieter, A. B., George-Jaeggli, B., Chapman, S. C., Laws, K., Suárez Cadavid, L. A., Wixted, J., 
Watson, J., Eldridge, M., Jordan, D. R., & Hammer, G. L. (2017). Multi-Spectral Imaging from 
an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of 
Sorghum Breeding Lines. Frontiers in Plant Science, 8, 1532. 
https://doi.org/10.3389/fpls.2017.01532 

Prasad, N. R., Patel, N. R., & Danodia, A. (2021). Cotton Yield Estimation Using Phenological 
Metrics Derived from Long-Term MODIS Data. Journal of the Indian Society of Remote 

Sensing, 49(11), 2597–2610. https://doi.org/10.1007/s12524-021-01414-6 

Prévot, L., Chauki, H., Troufleau, D., Weiss, M., Baret, F., & Brisson, N. (2003). Assimilating optical 
and radar data into the STICS crop model for wheat. Agronomie, 23(4), 297–303. 
https://doi.org/10.1051/agro:2003003 

Psomiadis, E., Dercas, N., Dalezios, N. R., & Spiropoulos, N. V. (2017). Evaluation and cross-
comparison of vegetation indices for crop monitoring from sentinel-2 and worldview-2 images. 
In C. M. Neale & A. Maltese (Eds.), Remote Sensing for Agriculture, Ecosystems, and 

Hydrology XIX (p. 79). SPIE. https://doi.org/10.1117/12.2278217 

Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted 
vegetation index. Remote Sensing of Environment, 48(2), 119–126. 
https://doi.org/10.1016/0034-4257(94)90134-1 

Quinn, L. D., Straker, K. C., Guo, J., Kim, S., Thapa, S., Kling, G., Lee, D. K., & Voigt, T. B. (2015). 
Stress-Tolerant Feedstocks for Sustainable Bioenergy Production on Marginal Land. BioEnergy 

Research, 8(3), 1081–1100. https://doi.org/10.1007/s12155-014-9557-y 

Rahaman, M. M., Chen, D., Gillani, Z., Klukas, C., & Chen, M. (2015). Advanced phenotyping and 
phenotype data analysis for the study of plant growth and development. Frontiers in Plant 

Science, 6. https://doi.org/10.3389/fpls.2015.00619 

Rengarajan, R., & Schott, J. (2018). Evaluation of Sensor and Environmental Factors Impacting the 
Use of Multiple Sensor Data for Time-Series Applications. Remote Sensing, 10(11), 1678. 
https://doi.org/10.3390/rs10111678 

Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing Vegetation from Soil Background 
Information. Photogrammetric Engineering and Remote Sensing, 43, 1541–1552. 

Richter, G. M., Agostini, F., Barker, A., Costomiris, D., & Qi, A. (2016). Assessing on-farm 
productivity of Miscanthus crops by combining soil mapping, yield modelling and remote 
sensing. Biomass and Bioenergy, 85, 252–261. https://doi.org/10.1016/j.biombioe.2015.12.024 

Ritchie, R. J. (2006). Consistent Sets of Spectrophotometric Chlorophyll Equations for Acetone, 
Methanol and Ethanol Solvents. Photosynthesis Research, 89(1), 27–41. 
https://doi.org/10.1007/s11120-006-9065-9 

Robson, P. R. H., Farrar, K., Gay, A. P., Jensen, E. F., Clifton-Brown, J. C., & Donnison, I. S. (2013). 
Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex 
associations with yield. Journal of Experimental Botany, 64(8), 2373–2383. 
https://doi.org/10.1093/jxb/ert104 

Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. 
Remote Sensing of Environment, 55(2), 95–107. https://doi.org/10.1016/0034-4257(95)00186-7 

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in 

the great plains with ERTS. 

Rusinowski, S., Krzyżak, J., Clifton-Brown, J., Jensen, E., Mos, M., Webster, R., Sitko, K., & 



References 

115 

Pogrzeba, M. (2019). New Miscanthus hybrids cultivated at a Polish metal-contaminated site 
demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations. 
Environmental Pollution, 252, 1377–1387. https://doi.org/10.1016/j.envpol.2019.06.062 

Sakamoto, T., Gitelson, A. A., & Arkebauer, T. J. (2013). MODIS-based corn grain yield estimation 
model incorporating crop phenology information. Remote Sensing of Environment, 131, 215–
231. https://doi.org/10.1016/j.rse.2012.12.017 

Salas Fernandez, M. G., Becraft, P. W., Yin, Y., & Lübberstedt, T. (2009). From dwarves to giants? 
Plant height manipulation for biomass yield. Trends in Plant Science, 14(8), 454–461. 
https://doi.org/10.1016/j.tplants.2009.06.005 

Samuelsson, R., Burvall, J., & Jirjis, R. (2006). Comparison of different methods for the 
determination of moisture content in biomass. Biomass and Bioenergy, 30(11), 929–934. 
https://doi.org/10.1016/j.biombioe.2006.06.004 

Sarath, G., Baird, L. M., & Mitchell, R. B. (2014). Senescence, dormancy and tillering in perennial 
C4 grasses. Plant Science, 217–218, 140–151. https://doi.org/10.1016/j.plantsci.2013.12.012 

Schauberger, B., Jägermeyr, J., & Gornott, C. (2020). A systematic review of local to regional yield 
forecasting approaches and frequently used data resources. European Journal of Agronomy, 120, 
126153. https://doi.org/10.1016/j.eja.2020.126153 

Schmidt, T., Fernando, A. L., Monti, A., & Rettenmaier, N. (2015). Life Cycle Assessment of 
Bioenergy and Bio-Based Products from Perennial Grasses Cultivated on Marginal Land in the 
Mediterranean Region. BioEnergy Research, 8(4), 1548–1561. https://doi.org/10.1007/s12155-
015-9691-1 

Segarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote Sensing for Precision 
Agriculture: Sentinel-2 Improved Features and Applications. Agronomy, 10(5), 641. 
https://doi.org/10.3390/agronomy10050641 

Sehgal, V. K., Chakraborty, D., & Sahoo, R. N. (2016). Inversion of radiative transfer model for 
retrieval of wheat biophysical parameters from broadband reflectance measurements. 
Information Processing in Agriculture, 3(2), 107–118. 
https://doi.org/10.1016/j.inpa.2016.04.001 

Seleiman, M. F., Santanen, A., Jaakkola, S., Ekholm, P., Hartikainen, H., Stoddard, F. L., & Mäkelä, 
P. S. A. (2013). Biomass yield and quality of bioenergy crops grown with synthetic and organic 
fertilizers. Biomass and Bioenergy, 59, 477–485. 
https://doi.org/10.1016/j.biombioe.2013.07.021 

Senthilnath, J., Dokania, A., Kandukuri, M., K.N., R., Anand, G., & Omkar, S. N. N. (2016). 
Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured 
by UAV. Biosystems Engineering, 146, 16–32. 
https://doi.org/10.1016/j.biosystemseng.2015.12.003 

Shah, S. H., Angel, Y., Houborg, R., Ali, S., & McCabe, M. F. (2019). A Random Forest Machine 
Learning Approach for the Retrieval of Leaf Chlorophyll Content in Wheat. Remote Sensing, 
11(8), 920. https://doi.org/10.3390/rs11080920 

She, X., Zhang, L., Cen, Y., Wu, T., Huang, C., & Baig, M. H. A. (2015). Comparison of the 
Continuity of Vegetation Indices Derived from Landsat 8 OLI and Landsat 7 ETM+ Data among 
Different Vegetation Types. Remote Sensing, 7(10), 13485–13506. 
https://doi.org/10.3390/rs71013485 

Shepherd, A., Clifton‐Brown, J., Kam, J., Buckby, S., & Hastings, A. (2020). Commercial experience 
with miscanthus crops: Establishment, yields and environmental observations. GCB Bioenergy, 
12(7), 510–523. https://doi.org/10.1111/gcbb.12690 



References 

116 

 

Shi, Y., Thomasson, J. A., Murray, S. C., Pugh, N. A., Rooney, W. L., Shafian, S., Rajan, N., Rouze, 
G., Morgan, C. L. S., Neely, H. L., Rana, A., Bagavathiannan, M. V., Henrickson, J., Bowden, 
E., Valasek, J., Olsenholler, J., Bishop, M. P., Sheridan, R., Putman, E. B., … Yang, C. (2016). 
Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research. PLOS 

ONE, 11(7), e0159781. https://doi.org/10.1371/journal.pone.0159781 

Shortall, O. K. (2013). “Marginal land” for energy crops: Exploring definitions and embedded 
assumptions. Energy Policy, 62, 19–27. https://doi.org/10.1016/j.enpol.2013.07.048 

Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of Remote Sensing in Precision 
Agriculture: A Review. Remote Sensing, 12(19), 3136. https://doi.org/10.3390/rs12193136 

Smith, R., Adams, J., Stephens, D., & Hick, P. (1995). Forecasting wheat yield in a Mediterranean-
type environment from the NOAA satellite. Australian Journal of Agricultural Research, 46(1), 
113. https://doi.org/10.1071/AR9950113 

Sripada, R. P., Heiniger, R. W., White, J. G., & Meijer, A. D. (2006). Aerial Color Infrared 
Photography for Determining Early In‐Season Nitrogen Requirements in Corn. Agronomy 

Journal, 98(4), 968–977. https://doi.org/10.2134/agronj2005.0200 

Struik, P. C., Amaducci, S., Bullard, M. J., Stutterheim, N. C., Venturi, G., & Cromack, H. T. H. 
(2000). Agronomy of fibre hemp (Cannabis sativa L.) in Europe. Industrial Crops and Products, 
11(2–3), 107–118. https://doi.org/10.1016/S0926-6690(99)00048-5 

Styks, J., Wróbel, M., Frączek, J., & Knapczyk, A. (2020). Effect of Compaction Pressure and 
Moisture Content on Quality Parameters of Perennial Biomass Pellets. Energies, 13(8), 1859. 
https://doi.org/10.3390/en13081859 

Su, W., Zhang, M., Bian, D., Liu, Z., Huang, J., Wang, W., Wu, J., & Guo, H. (2019). Phenotyping 
of Corn Plants Using Unmanned Aerial Vehicle (UAV) Images. Remote Sensing, 11(17), 2021. 
https://doi.org/10.3390/rs11172021 

Sun, B., Wang, C., Yang, C., Xu, B., Zhou, G., Li, X., Xie, J., Xu, S., Liu, B., Xie, T., Kuai, J., & 
Zhang, J. (2021). Retrieval of rapeseed leaf area index using the PROSAIL model with canopy 
coverage derived from UAV images as a correction parameter. International Journal of Applied 

Earth Observation and Geoinformation, 102, 102373. 
https://doi.org/10.1016/j.jag.2021.102373 

Tang, K., Struik, P. C., Yin, X., Calzolari, D., Musio, S., Thouminot, C., Bjelková, M., Stramkale, 
V., Magagnini, G., & Amaducci, S. (2017). A comprehensive study of planting density and 
nitrogen fertilization effect on dual-purpose hemp (Cannabis sativa L.) cultivation. Industrial 

Crops and Products, 107, 427–438. https://doi.org/10.1016/j.indcrop.2017.06.033 

Tang, K., Struik, P. C., Yin, X., Thouminot, C., Bjelková, M., Stramkale, V., & Amaducci, S. (2016). 
Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting 
environments. Industrial Crops and Products, 87, 33–44. 
https://doi.org/10.1016/j.indcrop.2016.04.026 

Tao, H., Feng, H., Xu, L., Miao, M., Yang, G., Yang, X., & Fan, L. (2020). Estimation of the Yield 
and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images. Sensors, 20(4), 
1231. https://doi.org/10.3390/s20041231 

Teillet, P., Fedosejevs, G., Barker, J., Miskey, C., & Bannari, A. (2006). Spectral Simulations of 
Vegetation Indices in the Context of Landsat Data Continuity. 2006 IEEE International 

Symposium on Geoscience and Remote Sensing, 1784–1787. 
https://doi.org/10.1109/IGARSS.2006.461 



References 

117 

Teillet, P. M., & Ren, X. (2008). Spectral band difference effects on vegetation indices derived from 
multiple satellite sensor data. Canadian Journal of Remote Sensing, 34, 159–173. 

Tejera, M. D., Miguez, F. E., & Heaton, E. A. (2021). The older plant gets the sun: Age-related 
changes in Miscanthus × giganteus phenology. GCB Bioenergy, 13(1), 4–20. 
https://doi.org/10.1111/GCBB.12745 

Tester, M., & Langridge, P. (2010). Breeding Technologies to Increase Crop Production in a 
Changing World. Science, 327(5967), 818–822. https://doi.org/10.1126/science.1183700 

Théau, J., Sankey, T. T., & Weber, K. T. (2010). Multi-sensor Analyses of Vegetation Indices in a 
Semi-arid Environment. GIScience & Remote Sensing, 47(2), 260–275. 
https://doi.org/10.2747/1548-1603.47.2.260 

Thomas, H., & Howarth, C. J. (2000). Five ways to stay green. Journal of Experimental Botany, 
51(suppl_1), 329–337. https://doi.org/10.1093/jexbot/51.suppl_1.329 

Thouminot, C. (2015). La sélection française du chanvre : panorama et perspectives. OCL, 22(6), 
D603. https://doi.org/10.1051/ocl/2015044 

Tillack, A., Clasen, A., Kleinschmit, B., & Förster, M. (2014). Estimation of the seasonal leaf area 
index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote 

Sensing of Environment, 141, 52–63. https://doi.org/10.1016/j.rse.2013.10.018 

Tilman, D., Socolow, R., Foley, J. A., Hill, J., Larson, E., Lynd, L., Pacala, S., Reilly, J., Searchinger, 
T., Somerville, C., & Williams, R. (2009). Beneficial Biofuels—The Food, Energy, and 
Environment Trilemma. Science, 325(5938), 270–271. https://doi.org/10.1126/science.1177970 

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. 
Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0 

Upreti, D., Huang, W., Kong, W., Pascucci, S., Pignatti, S., Zhou, X., Ye, H., & Casa, R. (2019). A 
Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical 
Variables from Sentinel-2. Remote Sensing, 11(5), 481. https://doi.org/10.3390/rs11050481 

Urrego, J. P. F., Huang, B., Næss, J. S., Hu, X., & Cherubini, F. (2021). Meta-analysis of leaf area 
index, canopy height and root depth of three bioenergy crops and their effects on land surface 
modeling. Agricultural and Forest Meteorology, 306, 108444. 
https://doi.org/10.1016/j.agrformet.2021.108444 

van der Cruijsen, K., Al Hassan, M., van Erven, G., Dolstra, O., & Trindade, L. M. (2021). Breeding 
Targets to Improve Biomass Quality in Miscanthus. Molecules, 26(2), 254. 
https://doi.org/10.3390/molecules26020254 

van der Werf, H. M. G. (2004). Life Cycle Analysis of field production of fibre hemp, the effect of 
production practices on environmental impacts. Euphytica, 140(1–2), 13–23. 
https://doi.org/10.1007/s10681-004-4750-2 

van Leeuwen, W. J. D., Orr, B. J., Marsh, S. E., & Herrmann, S. M. (2006). Multi-sensor NDVI data 
continuity: Uncertainties and implications for vegetation monitoring applications. Remote 

Sensing of Environment, 100(1), 67–81. https://doi.org/10.1016/j.rse.2005.10.002 

Varela, S., Pederson, T., Bernacchi, C. J., & Leakey, A. D. B. (2021). Understanding Growth 
Dynamics and Yield Prediction of Sorghum Using High Temporal Resolution UAV Imagery 
Time Series and Machine Learning. Remote Sensing, 13(9), 1763. 
https://doi.org/10.3390/rs13091763 

Venturi, P., Amaducci, S., Amaducci, M. T., & Venturi, G. (2007). Interaction Between Agronomic 
and Mechanical Factors for Fiber Crops Harvesting: Italian Results-Note II. Hemp. Journal of 

Natural Fibers, 4(3), 83–97. https://doi.org/10.1300/J395v04n03_06 



References 

118 

 

Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance modeling: 
The SAIL model. Remote Sensing of Environment, 16(2), 125–141. 
https://doi.org/10.1016/0034-4257(84)90057-9 

Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J. P., Veroustraete, F., Clevers, J. G. P. W., & 
Moreno, J. (2015). Optical remote sensing and the retrieval of terrestrial vegetation bio-
geophysical properties – A review. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 
273–290. https://doi.org/10.1016/j.isprsjprs.2015.05.005 

Verrelst, J., Dethier, S., Rivera, J. P., Munoz-Mari, J., Camps-Valls, G., & Moreno, J. (2016). Active 
Learning Methods for Efficient Hybrid Biophysical Variable Retrieval. IEEE Geoscience and 

Remote Sensing Letters, 13(7), 1012–1016. https://doi.org/10.1109/LGRS.2016.2560799 

Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.-P., Lewis, P., 
North, P., & Moreno, J. (2019). Quantifying Vegetation Biophysical Variables from Imaging 
Spectroscopy Data: A Review on Retrieval Methods. Surveys in Geophysics, 40(3), 589–629. 
https://doi.org/10.1007/s10712-018-9478-y 

Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J. P., Camps-Valls, G., & Moreno, J. (2012). 
Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for 
Sentinel-2 and -3. Remote Sensing of Environment, 118, 127–139. 
https://doi.org/10.1016/j.rse.2011.11.002 

Verrelst, J., Rivera, J. P., Leonenko, G., Alonso, L., & Moreno, J. J. (2014). Optimizing LUT-Based 
RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 
and -3 Data: Role of Cost Functions. IEEE Transactions on Geoscience and Remote Sensing, 
52(1), 257–269. https://doi.org/10.1109/TGRS.2013.2238242 

Verrelst, J., Rivera, J. P., Veroustraete, F., Muñoz-Marí, J., Clevers, J. G. P. W., Camps-Valls, G., & 
Moreno, J. (2015). Experimental Sentinel-2 LAI estimation using parametric, non-parametric 
and physical retrieval methods – A comparison. ISPRS Journal of Photogrammetry and Remote 

Sensing, 108, 260–272. https://doi.org/10.1016/j.isprsjprs.2015.04.013 

Villaescusa-Nadal, J. L., Franch, B., Roger, J.-C., Vermote, E. F., Skakun, S., & Justice, C. (2019). 
Spectral Adjustment Model’s Analysis and Application to Remote Sensing Data. IEEE Journal 

of Selected Topics in Applied Earth Observations and Remote Sensing, 12(3), 961–972. 
https://doi.org/10.1109/JSTARS.2018.2890068 

Vincini, M., & Frazzi, E. (2011). Comparing narrow and broad-band vegetation indices to estimate 
leaf chlorophyll content in planophile crop canopies. Precision Agriculture, 12(3), 334–344. 
https://doi.org/10.1007/s11119-010-9204-3 

Vohland, M., Mader, S., & Dorigo, W. (2010). Applying different inversion techniques to retrieve 
stand variables of summer barley with PROSPECT+SAIL. International Journal of Applied 

Earth Observation and Geoinformation, 12(2), 71–80. https://doi.org/10.1016/j.jag.2009.10.005 

Volpato, L., Pinto, F., González-Pérez, L., Thompson, I. G., Borém, A., Reynolds, M., Gérard, B., 
Molero, G., & Rodrigues, F. A. (2021). High Throughput Field Phenotyping for Plant Height 
Using UAV-Based RGB Imagery in Wheat Breeding Lines: Feasibility and Validation. 
Frontiers in Plant Science, 12, 185. https://doi.org/10.3389/fpls.2021.591587 

Vuolo, F., Neugebauer, N., Bolognesi, S. F., Atzberger, C., & D’Urso, G. (2013). Estimation of Leaf 
Area Index Using DEIMOS-1 Data: Application and Transferability of a Semi-Empirical 
Relationship between two Agricultural Areas. Remote Sensing, 5(3), 1274–1291. 
https://doi.org/10.3390/rs5031274 

Wan, L., Zhang, J., Dong, X., Du, X., Zhu, J., Sun, D., Liu, Y., He, Y., & Cen, H. (2021). Unmanned 



References 

119 

aerial vehicle-based field phenotyping of crop biomass using growth traits retrieved from 
PROSAIL model. Computers and Electronics in Agriculture, 187, 106304. 
https://doi.org/10.1016/j.compag.2021.106304 

Wan, L., Zhu, J., Du, X., Zhang, J., Han, X., Zhou, W., Li, X., Liu, J., Liang, F., He, Y., & Cen, H. 
(2021). A model for phenotyping crop fractional vegetation cover using imagery from unmanned 
aerial vehicles. Journal of Experimental Botany, 72(13), 4691–4707. 
https://doi.org/10.1093/jxb/erab194 

Wang, F., Huang, J., Tang, Y., & Wang, X. (2007). New Vegetation Index and Its Application in 
Estimating Leaf Area Index of Rice. Rice Science, 14(3), 195–203. 
https://doi.org/10.1016/S1672-6308(07)60027-4 

Wang, J., Badenhorst, P., Phelan, A., Pembleton, L., Shi, F., Cogan, N., Spangenberg, G., & Smith, 
K. (2019). Using Sensors and Unmanned Aircraft Systems for High-Throughput Phenotyping 
of Biomass in Perennial Ryegrass Breeding Trials. Frontiers in Plant Science, 10. 
https://doi.org/10.3389/fpls.2019.01381 

Wang, Li’ai, Zhou, X., Zhu, X., Dong, Z., & Guo, W. (2016). Estimation of biomass in wheat using 
random forest regression algorithm and remote sensing data. The Crop Journal, 4(3), 212–219. 
https://doi.org/10.1016/j.cj.2016.01.008 

Wang, Li, Chen, S., Peng, Z., Huang, J., Wang, C., Jiang, H., Zheng, Q., & Li, D. (2021). Phenology 
Effects on Physically Based Estimation of Paddy Rice Canopy Traits from UAV Hyperspectral 
Imagery. Remote Sensing, 13(9), 1792. https://doi.org/10.3390/rs13091792 

Wang, Y., Wang, D., Shi, P., & Omasa, K. (2014). Estimating rice chlorophyll content and leaf 
nitrogen concentration with a digital still color camera under natural light. Plant Methods, 10(1), 
36. https://doi.org/10.1186/1746-4811-10-36 

Warren, C. R. (2008). Rapid Measurement of Chlorophylls with a Microplate Reader. Journal of 

Plant Nutrition, 31(7), 1321–1332. https://doi.org/10.1080/01904160802135092 

White, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A., Conley, M. M., 
Feldmann, K. A., French, A. N., Heun, J. T., Hunsaker, D. J., Jenks, M. A., Kimball, B. A., Roth, 
R. L., Strand, R. J., Thorp, K. R., Wall, G. W., & Wang, G. (2012). Field-based phenomics for 
plant genetics research. Field Crops Research, 133, 101–112. 
https://doi.org/10.1016/j.fcr.2012.04.003 

Widlowski, J.-L., Verstraete, M. M., Pinty, B., & Gobron, N. (2000). Advanced vegetation indices 
optimized for up-coming sensors: Design, performance, and applications. IEEE Transactions on 

Geoscience and Remote Sensing, 38(6), 2489–2505. https://doi.org/10.1109/36.885197 

Wolanin, A., Mateo-García, G., Camps-Valls, G., Gómez-Chova, L., Meroni, M., Duveiller, G., 
Liangzhi, Y., & Guanter, L. (2020). Estimating and understanding crop yields with explainable 
deep learning in the Indian Wheat Belt. Environmental Research Letters, 15(2), 024019. 
https://doi.org/10.1088/1748-9326/ab68ac 

Wood, S. N. (2017). Generalized Additive Models. Chapman and Hall/CRC. 
https://doi.org/10.1201/9781315370279 

Woźniak, G., Dyderski, M. K., Kompała-Bąba, A., Jagodziński, A. M., Pasierbiński, A., Błońska, A., 
Bierza, W., Magurno, F., Sierka, E., Kompała‐Bąba, A., Jagodziński, A. M., Pasierbiński, A., 
Błońska, A., Bierza, W., Magurno, F., & Sierka, E. (2021). Use of remote sensing to track 
postindustrial vegetation development. Land Degradation & Development, 32(3), 1426–1439. 
https://doi.org/10.1002/ldr.3789 

Wu, C., Niu, Z., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral 
vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148(8–9), 



References 

120 

 

1230–1241. https://doi.org/10.1016/j.agrformet.2008.03.005 

Xie, C., & Yang, C. (2020). A review on plant high-throughput phenotyping traits using UAV-based 
sensors. Computers and Electronics in Agriculture, 178, 105731. 
https://doi.org/10.1016/j.compag.2020.105731 

Xie, Q., Mayes, S., & Sparkes, D. L. (2016). Early anthesis and delayed but fast leaf senescence 
contribute to individual grain dry matter and water accumulation in wheat. Field Crops 

Research, 187, 24–34. https://doi.org/10.1016/j.fcr.2015.12.009 

Xu, X., Fan, L., Li, Z., Meng, Y., Feng, H., Yang, H., & Xu, B. (2021). Estimating Leaf Nitrogen 
Content in Corn Based on Information Fusion of Multiple-Sensor Imagery from UAV. Remote 

Sensing, 13(3), 340. https://doi.org/10.3390/rs13030340 

Yang, G., Liu, J., Zhao, C., Li, Z. Z., Huang, Y., Yu, H., Xu, B., Yang, X., Zhu, D., Zhang, X., Zhang, 
R., Feng, H., Zhao, X., Li, Z. Z., Li, H., & Yang, H. (2017). Unmanned Aerial Vehicle Remote 
Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Frontiers in Plant 

Science, 8, 1111. https://doi.org/10.3389/fpls.2017.01111 

Yang, H. (2011). Remote Sensing Technique for Predicting Harvest Time of Tomatoes. Procedia 

Environmental Sciences, 10, 666–671. https://doi.org/10.1016/j.proenv.2011.09.107 

Yang, J., & Udvardi, M. (2018). Senescence and nitrogen use efficiency in perennial grasses for 
forage and biofuel production. Journal of Experimental Botany, 69(4), 855–865. 
https://doi.org/10.1093/jxb/erx241 

Yang, Y., Zha, W., Tang, K., Deng, G., Du, G., & Liu, F. (2021). Effect of Nitrogen Supply on 
Growth and Nitrogen Utilization in Hemp (Cannabis sativa L.). Agronomy, 11(11), 2310. 
https://doi.org/10.3390/agronomy11112310 

Yu, N., Li, L., Schmitz, N., Tian, L. F., Greenberg, J. A., & Diers, B. W. (2016). Development of 
methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial 
vehicle based platform. Remote Sensing of Environment, 187, 91–101. 
https://doi.org/10.1016/j.rse.2016.10.005 

Yue, J., Feng, H., Yang, G., & Li, Z. (2018). A Comparison of Regression Techniques for Estimation 
of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy. Remote Sensing, 
10(2), 66. https://doi.org/10.3390/rs10010066 

Zaman-Allah, M., Vergara, O., Araus, J. L., Tarekegne, A., Magorokosho, C., Zarco-Tejada, P. J., 
Hornero, A., Albà, A. H., Das, B., Craufurd, P., Olsen, M., Prasanna, B. M., & Cairns, J. (2015). 
Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant 

Methods, 11(1), 35. https://doi.org/10.1186/s13007-015-0078-2 

Zegada-Lizarazu, W., Elbersen, H. W., Cosentino, S. L., Zatta, A., Alexopoulou, E., & Monti, A. 
(2010). Agronomic aspects of future energy crops in Europe. Biofuels, Bioproducts and 

Biorefining, 4(6), 674–691. https://doi.org/10.1002/bbb.242 

Zhang, B., Hastings, A., Clifton‐Brown, J. C., Jiang, D., & Faaij, A. P. C. (2020). Modeled spatial 
assessment of biomass productivity and technical potential of Miscanthus × giganteus , Panicum 
virgatum L., and Jatropha on marginal land in China. GCB Bioenergy, 12(5), 328–345. 
https://doi.org/10.1111/gcbb.12673 

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision 
agriculture: a review. Precision Agriculture, 13(6), 693–712. https://doi.org/10.1007/s11119-
012-9274-5 

Zhang, F., & Zhou, G. (2019). Estimation of vegetation water content using hyperspectral vegetation 



References 

121 

indices: a comparison of crop water indicators in response to water stress treatments for summer 
maize. BMC Ecology, 19(1), 18. https://doi.org/10.1186/s12898-019-0233-0 

Zhang, M., Abrahao, G., Cohn, A., Campolo, J., & Thompson, S. (2021). A MODIS-based scalable 
remote sensing method to estimate sowing and harvest dates of soybean crops in Mato Grosso, 
Brazil. Heliyon, 7(7), e07436. https://doi.org/10.1016/j.heliyon.2021.e07436 

Zhang, Y., Yang, J., Liu, X., Du, L., Shi, S., Sun, J., & Chen, B. (2020). Estimation of Multi-Species 
Leaf Area Index Based on Chinese GF-1 Satellite Data Using Look-Up Table and Gaussian 
Process Regression Methods. Sensors, 20(9), 2460. https://doi.org/10.3390/s20092460 

Zhou, J. J., Yungbluth, D., Vong, C. N., Scaboo, A., & Zhou, J. J. (2019). Estimation of the Maturity 
Date of Soybean Breeding Lines Using UAV-Based Multispectral Imagery. Remote Sensing, 
11(18), 2075. https://doi.org/10.3390/rs11182075 

Zhu, W., Sun, Z., Huang, Y., Lai, J., Li, J., Zhang, J., Yang, B., Li, B., Li, S., Zhu, K., Li, Y., & Liao, 
X. (2019). Improving Field-Scale Wheat LAI Retrieval Based on UAV Remote-Sensing 
Observations and Optimized VI-LUTs. Remote Sensing, 11(20), 2456. 
https://doi.org/10.3390/rs11202456 

Zhu, X.-G., Chang, T.-G., Song, Q.-F., Finnan, J., Barth, S., Mårtensson, L.-M., & Jones, M. B. 
(2016). A Systems Approach Guiding Future Biomass Crop Development on Marginal Land. In 
Perennial Biomass Crops for a Resource-Constrained World (pp. 209–224). Springer 
International Publishing. https://doi.org/10.1007/978-3-319-44530-4_18 

 

  



 

122 

 

Acknowledgments 
I would like to thank all the people who inspired, encouraged, and helped me during this memorable 

PhD journey. Without them, I would have never finished this thesis. 

 

I would like to thank my supervisor prof. Stefano Amaducci for providing me autonomy, useful 

advice and many helpful suggestions that were invaluable for the development of my research ideas 

and skills, necessary to complete my PhD. 

 

I would like to thank my colleagues, even those working on other scientific fields, for helping me to 

gather and process data, and for their friendly support. 

 

I would like to thank “Fondazione Eugenio e Germana Parizzi”, in particular Dr. Cinzia Parizzi, for 

financially supporting my research project. 

 

This thesis is part of the GRACE project which has received funding from the Bio-based Industries 

Joint Undertaking (JU) under the European Union’s Horizon 2020 research and innovation 

programme under grant agreement No 745012. The JU receives support from the European Union’s 

Horizon 2020 research and innovation programme and from the Bio-based Industries Consortium.  

  

https://www.grace-bbi.eu/


 

123 

Short biography 
Giorgio Impollonia was born on February 19, 1990, in 

Palermo (Italy). Giorgio studied "Agricultural Science 

and Technology" at "Università degli Studi di Palermo" 

in Palermo (Italy), where he obtained his master's degree 

in 2016, discussing the thesis "Development of a 

multispectral tool for the determination of turfgrass 

vegetation indices through imaging techniques". After his 

master's degree, Giorgio attended a postgraduate on 

"GIScience and Remote Pilot Systems, for the integrated 

management of the land and natural resources: 

Geoinformation and new technologies for sustainable agriculture" at "Università degli Studi di 

Padova" in Padua (Italy), where he obtained his postgraduate in 2018, discussing the thesis 

"Development of radiometric correction techniques for UAV remote sensing images for monitoring 

the putting green turfgrass". During his postgraduate in Padua, Giorgio developed an interest in geo-

informatics and remote sensing for precision agriculture, and he collaborated with Archetipo start-

up, which provides remote sensing services. In November 2018, Giorgio won a scholarship, allowing 

him to carry out his PhD at the Centre for Geospatial Research and Analysis and Remote Sensing 

(CRAST) at "Università Cattolica del Sacro Cuore" in Piacenza (Italy). During his PhD, he worked 

in remote sensing for precision agriculture, high-throughput crop phenotyping, and participated in 

several scientific projects (see the section PhD scientific activities). His research field is at the 

interface between GIS science and remote sensing for precision agriculture applications. His main 

interests are related to high resolution multispectral/thermal UAV remote sensing to estimate 

biochemical and biophysical crop parameters, such as leaf area index (LAI), chlorophyll and nitrogen 

contents, biomass, and yield, through machine learning analysis and inversion of the canopy radiative 

transfer models.  



 

124 

 

List of publications 
 

Published papers: 
 

 Motisi, A., Impollonia, G., Minacapilli, M., Orlando, S., & Sarno, M. (2021). TURF-BOX: 
an active lighting multispectral imaging system with led VIS-NIR sources for monitoring of 
vegetated surfaces. In Acta Horticulturae (Issue 1314, pp. 383–390). International Society for 
Horticultural Science (ISHS). https://doi.org/10.17660/actahortic.2021.1314.48 
 

 Impollonia, G., Croci, M., Martani, E., Ferrarini, A., Kam, J., Trindade, L. M., Clifton-
Brown, J., Amaducci, S. (2022). Moisture content estimation and senescence phenotyping of 
novel Miscanthus hybrids combining UAV based remote sensing and machine learning. GCB 
Bioenergy. https://doi.org/10.1111/gcbb.12930 

 
 

Papers in review and in preparation:  
 

 Antonucci*, G., Impollonia, G.*, Croci, M., Marcone, A., Amaducci, S. (2022). High-
Throughput Plant Phenotyping for Evaluating Biostimulants: Biophysical Variables 
Estimation Through PROSAIL Inversion. Submitted to Smart Agricultural Technology. * 
Shared co-first authorship 

 

 Impollonia, G., Croci, M., Ferrarini, A., Brook, J., Martani, E., Blandinières, H., Marcone, 
A., Awty-Carroll, D., Ashman, C., Kam, J., Trindade, L. M., Boschetti, M., Clifton-Brown, 
J., Amaducci, S. (202x). UAV remote sensing for high-throughput phenotyping and for yield 
prediction of Miscanthus by machine learning techniques. 

 

 Impollonia, G., Croci, M., Blandinières, H., Marcone, A., Amaducci, S. (202x). Comparison 
of different inversion methods of the PROSAIL model for the hemp trait estimations by UAV-
based phenotyping.  
 

 Croci, M., Impollonia, G., Colauzzi, M., Amaducci, S. (202x). Impact of training set size and 
lead time on early processing tomato crop mapping accuracy. 

 
 Croci, M., Impollonia, G., Letterio, T., Marcone, A., Colauzzi, M., Ventura, F., Vignudelli, 

M., Anconelli, S., Amaducci, S. (202x). Comparative analysis of different retrieval methods 
for mapping Leaf Area Index using Sentinel-2. 

 
 Croci, M., Impollonia, G., Amaducci, S. (202x). Dynamic Maize Yield Predictions Using 

Machine Learning on Multi-Source Data.  
 

 Blandinières, H., Impollonia, G., Croci, M., Marcone, A., Amaducci, S. (202x). Productivity, 
eco-physiology, and stem processability of a yellow hemp (Cannabis sativa L.) cultivar under 
varying levels of nitrogen fertilisation.  

https://doi.org/10.17660/actahortic.2021.1314.48
https://doi.org/10.1111/gcbb.12930


 

125 

PhD scientific activities 
 

PhD exams of the doctoral school 
 

 Research ethics and epistemology 

 European food law and policy 

 English course 

 Introduction to applied statistics for agri-food data 

 Sustainable animal production 

 Information literacy 

 Food technology and sustainability 

 Accounting tools for management 

 Sustainability management 

 Ecological intensification of agriculture 

 

Courses 
 

 “Spatial data analysis, applications to agronomic research” organized by Società Italiana di 

Agronomia. 

 “Statistical methodology for agricultural science. General and generalized linear models” 

organized by Società Italiana di Agronomia. 

 

Projects  
Here is a list of the projects that I’ve participated during the PhD period:  
 

 Agro.Big.Data.Science: The Agro.Big.Data.Science project intends to apply the data driven 

logic to 3 production chains (kiwi, pear and spinach), complete with the necessary sensors for 

real-time data collection. 

 FarmCO2Sink: The FarmCO2Sink project aims to identify, in agroforestry production 

systems of the Province of Piacenza, the most efficient conservation systems in terms of 

biological sequestration of C at farm level and the reduction of climate-altering greenhouse 

gas emissions (GHG). 

 GRACE: The EU-funded GRACE project demonstrates large-scale miscanthus and hemp 

production on land with low productivity, contaminated soil or which has been abandoned. 

 POSITIVE: The POSITIVE project aims to make agronomic interest indices available on a 

regional scale from satellite images of the Copernicus project and to prepare an IT 

infrastructure that makes precision irrigation and fertigation usable throughout the region. 

http://agrobigdatascience.it/
http://farmco2sink.crpa.it/nqcontent.cfm?a_id=19589
https://www.grace-bbi.eu/
http://www.progettopositive.it/nqcontent.cfm?a_id=19491


 

126 

 

 SOIPomI: The SOIPomI project aims to remotely monitor the fields, processing the satellite 

images of the European Space Agency, to give operators in the supply chain an innovative 

tool to improve the management of processing tomatoes in Northern Italy. 

 

Lecturer 
 

 “UAV remote sensing for precision nitrogen fertilisation” carried out during the subject 

“Agricoltura di Precisione” of master’s degree “Scienze e Tecnologie Agrarie” of the 

“Università Cattolica del Sacro Cuore”. 

 “Case studies of precision agriculture” carried out at the Dinamica training centre. 

 “GIS for precision agriculture” carried out at the Dinamica training centre. 

 “Introduction to GIS and information systems” carried out at the Dinamica training centre. 

 “Precision agriculture for nitrogen fertilisation” carried out at the Formart training centre. 

 “Crop irrigation and precision irrigation” carried out at the Vittorio Tadini training centre. 

 “GIS for precision agriculture” carried out at the Vittorio Tadini training centre. 

 “Precision agriculture” carried out at the Vittorio Tadini training centre. 

 “Monitoring of spinach by remote sensing” webinars carried out within 

Agro.Big.Data.Science project. 

https://progetti.crpv.it/Home/ProjectDetail/60

	Abstract
	Contents
	Chapter 1
	1.1 Biomass crops on marginal land: role of miscanthus and hemp within EU GRACE project
	1.2 High-throughput phenotyping by UAV remote sensing: sensors and applications
	1.3 Estimation of phenotypic crop traits: statistical and physical methods
	1.4 Objectives
	1.5 Thesis outline

	Chapter 2
	2.1 Introduction
	2.2 Materials and methods
	2.2.1 Experimental design
	2.2.2 Crop measurements
	2.2.3 UAV multispectral data
	2.2.4 PROSAIL model
	2.2.5 Inversion methods of the PROSAIL model
	2.2.5.1 The look-up table inversion method
	2.2.5.2 The hybrid regression inversion method
	2.2.5.3 Comparison of inversion methods

	2.2.6 GAM for crop phenotyping

	2.3 Results
	2.3.1 Comparison of inversion methods for LAI trait estimation
	2.3.2 Comparison of inversion methods for LCC trait estimation
	2.3.3 Dynamics of LAI and LCC
	2.3.4 Effect of nitrogen fertilisation on LAI and LCC dynamics

	2.4 Discussion
	2.4.1 Evaluation of the inversion methods accuracy for the estimation of LAI and LCC
	2.4.2 UAV remote sensing and GAM for phenotyping the dynamics of LAI and LCC

	2.5 Conclusion

	Chapter 3
	3.1 Introduction
	3.2 Materials and methods
	3.2.1 Experimental design
	3.2.2 Phenotypic and yield measurements
	3.2.3 UAV multispectral data and vegetation indices
	3.2.4 Using the PROSAIL model to link VIs from different multispectral sensors
	3.2.5 Time series of VIs and peak derivation
	3.2.6 Machine learning modelling and variable importance

	3.3 Results
	3.3.1 PROSAIL model for linking VIs from different multispectral sensors
	3.3.2 Importance of variables in machine learning models
	3.3.3 Machine learning model for crop traits estimation
	3.3.4 Machine learning model for yield prediction
	3.3.5 Time series of VIs and yield prediction analysis

	3.4 Discussion
	3.4.1 The importance of linking VIs for multi-sensor interoperability
	3.4.2 Estimating Miscanthus traits with machine learning
	3.4.3 Yield prediction using machine learning and peak of VIs

	3.5 Conclusion

	Chapter 4
	4.1 Introduction
	4.2 Materials and methods
	4.2.1 Experimental design
	4.2.2 Crop measurements
	4.2.3 UAV multispectral data and vegetation indices
	4.2.4 Machine learning model for moisture content estimation
	4.2.5 GAM for phenotyping Miscanthus senescence dynamics

	4.3 Results
	4.3.1 Dynamics of moisture content in Miscanthus biomass
	4.3.2 Recursive Feature Elimination of vegetation indices
	4.3.3 RF model performance and transferability
	4.3.4 Phenotyping of Miscanthus senescence dynamics with multiple UAV flights

	4.4 Discussion
	4.4.1 Selection of multispectral vegetation indices for Miscanthus moisture content estimation
	4.4.2 Moisture content estimation with a machine learning algorithm
	4.4.3 Phenotyping stay-green trait via UAV remote sensing to capture genotypic variation during senescence

	4.5 Conclusion

	Chapter 5
	5.1 Main results
	5.2 Scientific contribution
	5.3 Future research

	Reference
	Acknowledgments
	Short biography
	List of publications
	PhD scientific activities

