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Abstract 

 

Due to the effects of climate change and the potential shortage of resources like water and fertilizer, 

the use of novel techniques in agriculture has become a major priority on the global scene. The focus 

of this research is the application of proximal sensing methods for precision soil and crop 

management and sustainable use of water and nitrogen. The research has been focused on sweet maize 

(Zea mays var. saccharata L.) crop. The main objectives of the thesis were to i) describe the spatial 

variability of the experimental site; ii) analyse the sensitivity of spectral information to explain the 

physiological and yield response of sweet maize under various nitrogen and water management; iii) 

evaluate the relationship between bio-physiological crop parameters and hyperspectral vegetation 

indices (VIs); iv) identify suitable red-green-blue (RGB) indices for estimating crop properties.  

The experimental trial on sweet maize was conducted at the Mediterranean Agronomic Institute of 

Valenzano, Bari (Southern Italy), in the growing seasons 2020 and 2021. Sweet maize was grown 

and tested under three irrigation regimes (full irrigation, deficit irrigation, and rainfed) and two 

nitrogen levels (300 and 50 kg ha-1). 

 As the first step of the experimental set-up, an electromagnetic induction sensor (EMI) was used to 

measure apparent electrical conductivity, in order to characterize the soil spatial variability and define 

the experimental layout. Our results highlighted the great potential of using proximal geophysical 

sensors to better guide experimental agronomic trials. 

Thereafter, during the growing seasons ground-based, aerial-based and bio-physiological 

measurements were acquired. Hyperspectral reflectance and canopy temperature were measured 

using proximal sensors. Concerning bio-physiological measurements leaf gas exchanges, relative 

water content, leaf chlorophyll concentration, leaf area index, dry-above-ground biomass and yield 

were measured. In addition, RGB images were captured by an RGB camera installed on the drone.  

The data of hyperspectral reflectance were used to evaluate the crop physiological parameters of 

sweet maize. Principal component analysis (PCA) was applied to determine which wavelengths were 

most important to describe sweet maize performance. Correlation analysis and multiple linear 

regression, with a stepwise algorithm, were used to select the best-performing vegetation indices 

(VIs) for monitoring the yield and physiological response of sweet maize grown under different water 

and nitrogen availability. The multivariate regression results showed that red-edge group indices, 

such as CARI (Chlorophyll Absorption Reflectance Index), DD (Double Difference Index), REIP 

(Red- Edge Inflection Point), and Clred-edge (Chlorophyll Red-Edge) were good predictors of yield and 

physiological parameters, confirming the crucial role of the red-edge spectral region that also emerged 
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through PCA. DD, REIP, and Clred-edge VIs were able to discriminate water stress at the mid-season 

stage, as well as to separate water and N stress levels. 

Moreover, we evaluated the sensitivity of hyperspectral indices to different water and nitrogen 

treatments. The DATT index, based on near-infrared and red-edge wavelengths, performed better 

than other indices in explaining the variation in chlorophyll content, whereas the double difference 

index (DD) showed the greatest correlation with the leaf gas exchange. The modified normalized 

difference vegetation index (NNDVI) and the ratio of water band index to normalized difference 

vegetation index (WBI/NDVI) showed the highest capacity to distinguish the interaction of irrigation 

x nitrogen, and the best discriminating capability of these indices was observed under a low nitrogen 

level. Moreover, red-edge-based indices had higher sensitivity to nitrogen levels compared to the 

structural and water band indices. This study highlighted that it is crucial to choose proper narrow-

band vegetation indices to monitor the plant's eco-physiological response to water and nitrogen 

stresses.  

To overcome some environmental limitations in crop production, remote sensing measures may be 

utilized to quickly evaluate crop performance and to cost-effectively monitor a large number of plots. 

Hence, we examined how well a set of RGB indices and hyperspectral vegetation indices were able 

to describe the crop growth. The greatest ability was found for the Green-Area index (GA) predicting 

Leaf Area Index (LAI) in 2020 (R2=0.61) and Leaf Chlorophyll Concentration (CC) in 2021 

(R2=0.49). Moreover, the capacity of predicting gas-exchange parameters by red-edge region was 

demonstrated. Several red-edge indices, including Clred-edge, NDRE, MTCI, DD, and REIP, were 

shown to be the best predictors of the bio-physiological parameters. The usefulness of RGB-derived 

indices, which are less expensive and less time-consuming compared to hyperspectral indices, has 

been assessed in this study. 
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Sintesi 

A causa degli effetti del cambiamento climatico e della potenziale carenza di risorse come acqua e 

fertilizzanti, l'uso di nuove tecniche in agricoltura è diventata una delle principali priorità sulla scena 

globale. L'obiettivo di questo progetto di ricerca è l'applicazione di metodi di rilevamento prossimale 

per la gestione sostenibile del suolo, delle colture e delle risorse (acqua e azoto). Lo studio è stato 

effettuato su una coltura di mais dolce (Zea mays var. saccharata L.). Gli obiettivi principali del 

progetto sono stati: i) descrivere la variabilità spaziale del suolo del sito sperimentale; ii) analizzare 

la sensibilità delle informazioni spettrali per spiegare la risposta fisiologica e produttiva  del mais 

dolce in diverse modalità di gestione dell'azoto e dell'acqua; iii) valutare il legame tra parametri 

colturali bio-fisiologici e indici vegetazionali iperspettrale (VIs); iv) determinare gli indici rosso-

verde-blu (RGB) adatti per la stima delle proprietà delle colture. 

La prova sperimentale sul mais dolce è stata condotta presso i campi sperimentali dell’Istituto 

Agronomico Mediterraneo di Valenzano, Bari (Italia), negli anni 2020 e 2021. Il mais dolce è stato 

coltivato e testato in tre regimi irrigui (irrigazione ottimale, irrigazione in deficit e in assenza di 

irrigazione) e due livelli di azoto (300 e 50 kg ha-1). 

Una fase preliminare della sperimentazione ha previsto l’impiego di un sensore ad induzione 

elettromagnetica (EMI) per misurare la conduttività elettrica apparente del suolo e definire il disegno 

sperimentale. I nostri risultati hanno evidenziato il grande potenziale dell'utilizzo di sensori geofisici 

prossimali anche al fine di impostare le prove agronomiche sperimentali.   

Successivamente, sono state effettuate misurazioni a terra, aeree e biofisiologiche. Le misure di 

riflettanza iperspettrale e di temperatura della canopy sono state effettuate attraverso sensori 

prossimali. Per quanto riguarda le misurazioni biofisiologiche, sono stati rilevati i seguenti parametri: 

gli scambi gassosi a livello fogliare, il contenuto idrico relativo nelle foglie, il contenuto di clorofilla 

fogliare, l'indice di area fogliare, la biomassa della coltura e la produzione. Inoltre, le immagini RGB 

sono state catturate da una telecamera RGB installata sul drone. 

I dati della riflettanza iperspettrale sono stati utilizzati per valutare i parametri fisiologici della coltura. 

L'analisi delle componenti principali (PCA) è stata applicata per identificare quali lunghezze d'onda 

sono risultate essere più efficaci nel descrivere la risposta della coltura. L'analisi di correlazione e la 

regressione lineare multipla, con un algoritmo stepwise, sono state utilizzate per selezionare gli indici 

di vegetazione (VIs) che sono risultati essere i più efficienti per monitorare la risposta produttiva e 

quella fisiologica del mais dolce coltivato in diverse disponibilità di acqua e azoto. I risultati della 

regressione multivariata hanno mostrato che gli indici vegetazionali che considerano la regione del 

red-edge, come gli indici CARI (Chlorophyll Absorption Reflectance Index), DD (Double Difference 

Index), REIP (Red- Edge Inflection Point) e Clred-edge (Chlorophyll Red-Edge) sono stati buoni 
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predittori della produzione e dei parametri fisiologici, a conferma del ruolo cruciale di questa regione 

spettrale così come anche emerso attraverso la PCA. I VIs DD, REIP e Clred-edge sono stati in grado di 

discriminare le condizioni di stress in condizioni di stress idrico e nutrizionale. 

I risultati hanno anche mostrato come l'indice DATT, basato sulle lunghezze d'onda del vicino 

infrarosso e del red-edge, si sia comportato meglio di altri indici nello spiegare la variazione del 

contenuto di clorofilla, mentre l'indice DD abbia mostrato la maggiore correlazione con gli scambi 

gassosi. L'indice di vegetazione NNDVI e il rapporto WBI/NDVI hanno mostrato la più alta capacità 

di distinguere l'interazione di irrigazione x azoto, mentre la migliore capacità discriminante di questi 

indici è stata osservata in condizioni di azoto limitato. Gli indici basati sul red-edge hanno mostrato 

una maggiore sensibilità ai livelli di azoto rispetto agli indici strutturali e di “water band”. Questo 

studio ha evidenziato l’importanza nella scelta di adeguati indici di vegetazione “narrow band” per 

monitorare la risposta eco-fisiologica della pianta agli stress idrici e nutrizionali. 

Inoltre, lo studio ha evidenziato la possibilità di utilizzare misure da remoto per valutare rapidamente 

le prestazioni delle colture ampliando le superfici di monitoraggio, pur riducendo i costi. Pertanto, 

sono state confrontate le potenzialità di indici RGB e indici di vegetazione iperspettrali. L'indice GA 

ha mostrato la migliore capacità predittiva nei riguardi dell'indice di area fogliare (LAI) nel 2020 

(R2= 0,61) e della concentrazione di clorofilla fogliare (CC) nel 2021 (R2= 0,49). Inoltre, è stata la 

regione “red-edge” ha evidenziato ancora una volta la migliore capacità predittiva per i parametri di 

scambi gassosi. Risultati simili sono stati riscontrati anche per gli indici Clred-edge, NDRE, MTCI, DD 

e REIP. La ricerca ha dunque dimostrato l'utilità degli indici RGB che, pur essendo meno costosi e 

richiedendo meno tempo rispetto agli indici iperspettrali, hanno dimostrato essere ugualmente 

efficienti. 
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Chapter 1 

Introduction  
 

“Advances in medicine and agriculture have saved vastly more lives than have been lost in all the 

wars in history.”              -

Carl Sagan  

1.1. Motivation and background  

A rise in human population, a shift in lifestyle, and growth in industrial and agricultural output have 

all contributed to a greater water demand. Due to an increase in the frequency of droughts, 

urbanization, and population expansion in cities, the demand for water resources has increased and 

will keep increasing in the upcoming years. Deforestation, higher fertilizer and pesticide usage, all 

have a significant negative impact on water supplies. Since the Mediterranean area has been 

designated as one of the most sensitive places to the effects of climate change in the world, the actual 

pattern of climate change and land use clearly predicted an increase in water demand and a shortage 

of water and agricultural land in that region (Pascual et al., 2017). 

According to Pereira et al. (2009), the sector with the largest water use is agriculture and a lack of 

water is the most significant abiotic stressor for agricultural production, frequently reducing plant 

growth, yield, and quality (Gerhards et al., 2016). Additionally, in arid and semi-arid countries where 

in-season rainfall is insufficient to cover crop water requirements, irrigation is a crucial component 

of agricultural input. Knowing the appropriate amount of water to apply, as well as the duration and 

frequency of irrigation, can help to reduce crop yield loss due to water stress, maximize yield response 

to other management practices, and optimize yield per unit of water applied (i.e. irrigation efficiency), 

which can then help to maximize the farmer's profit (Khanal et al., 2017). Within the Mediterranean 

area, there are significant disparities in freshwater supplies and irrigation methods, especially between 

the northern and southern portions of the Mediterranean Basin. Irrigation is the greatest water user, 

accounting for 69% of all water consumption overall (Malek and Verburg, 2017). In order to deal 

with this complicated scenario, the Mediterranean area needs precise and real-time monitoring 

techniques. To pursue such a goal, remote and proximal sensing can be used. 

For farmers dealing with water constraints, developing sustainable irrigation techniques is a leading 

issue (Bell et al., 2018). However, agriculture is a complex system and many factors may affect 
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production. For example, in order to maximize output, nitrogen (N) is essential for achieving this aim 

(Spiertz, 2009). Moreover, N has a crucial role in the photosynthetic processes and the production 

and duration of leaves; these aspects are directly associated with increased yield (Leghari et al., 2016). 

Hence, nitrogen, as well as other fertilizers, needs to be applied at the level required for optimal crop 

growth based on crop requirements and agro-climatic considerations ensuring protection of the 

environment and human health (Gruhn et al., 2000). One of the main challenges in agriculture is to 

understand how different levels of irrigation and fertilizers have significant effects on crop 

production, growth and water productivity (Javed et al., 2022).  

Due to fundamental tenet of increasing yields by applying the proper quantity of input at the proper 

location and time, at the same time reducing production costs and agricultural practices negative 

effects on the environment, precision agriculture is also gaining popularity today. Many farm 

managers strive to use new technology for decision-making in order to achieve this aim, including 

when and where to water, fertilize, grow crops, apply herbicides, etc. Data collection/analysis, 

information management, computer processing, field positioning, yield monitoring, remote sensing, 

and sensor design are all part of precision agriculture.   

Several non-destructive remote sensing techniques may be used to offer valuable performance on 

canopy coverage, plant growth, development, and the detection of numerous environmental 

challenges that restrict plant productivity. From the ground, air, and space-based platforms, detailed 

geographical and temporal information on plants reactions to environment is delivered (Pinter et al., 

2003). 

1.2. Research questions  

This thesis addresses four main questions build upon previous studies with the goal of answering 

additional questions and developing new methods to analyze data obtained by crop canopy sensors. 

This has led us to the four overarching research questions addressed in this dissertation: 

1. To characterize soil spatial variability of the experimental site; 

2. To study the sensitivity of spectral information, in order to describe the physiological and 

yield response of sweet maize under different water and nitrogen management; 

3.  To investigate the relationship between hyperspectral vegetation indices (VIs) and both 

biometric and physiological crop parameters, during the growing season;  

4. To assess the suitability of red-green-blue (RGB) indices to estimate crop parameters.  
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This dissertation addresses these objectives through different methodologies for analysing crop 

spectral information, bio-physiological parameters, as well as RGB images. Question 1 focuses on 

using a proximal geophysical sensor for soil variability characterization. The obtained information, 

together with data from soil analysis, helped to define the experimental design and to improve data 

analysis. The physiological and yield response of sweet maize under various water and nitrogen 

management is described in response to question 2; in this approach the sensitivity of spectral 

information was investigated. To this aim, the factors extracted through Principal Component 

Analysis (PCA) and selected VIs were analysed using correlation analysis and multiple linear 

regression (MLR) with a stepwise algorithm. Thereafter, their performance was evaluated and 

discussed. In Question 3 the overall objective was to assess the performance of various narrow-band 

vegetation indices and sensitivity to different irrigation and nitrogen levels and their interaction, while 

the specific objective was to find the best correlation in determining which vegetation index is the 

most efficient predictor of crop eco-physiological parameters. Finally, in question 4 the performance 

of different RGB indices was assessed, as well as their interactions with bio-physiological parameters.  

The responses of those research questions facilitated understanding of the behaviour of different VIs, 

their performance under different growth conditions, as well as the potential of proximal and low-

cost aerial RGB images to detect and monitor crop stress.  

The remainder of this dissertation is organized as follows. Chapter 2 covers the theoretical and 

conceptual framework used in this dissertation and connects the dots between all the upcoming 

chapters.  

Chapter 3 includes four sub-chapters, where the first one introduces the use and the results of EMI 

proximal sensor for soil characterization. The second sub-chapter applies PCA and MLR for 

sensitivity analysis of the spectral information. Thereafter, the performance of narrow-band VIs and 

their ability to differentiate between irrigation and nitrogen treatment is described in sub-chapter 

three. The fourth sub-chapter explained the trend of RGB VIs, as well as their correlation with bio-

physiological parameters. Finally, Chapter 4 concludes with methodological contributions of the 

dissertation, and a discussion of insights across the applications, limitations, and potential for future 

development of the planning framework. 

The sub-chapters 2, 3 and 4 are presented as stand-alone papers. This technique enables chapters to 

be read and used independently without having to go through the entire dissertation. 
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Chapter 2 

 

Theoretical and Conceptual Framework 
 

The previous chapter provided a general introduction concerning the necessity of agricultural 

modernization and use of novel, more precise technologies for maximizing yield, optimizing inputs 

and decreasing the negative impact on the environment. Here, we present the theoretical and 

conceptual framework of the entire dissertation by addressing the what, why, and how questions in 

the above literature. In order to address such questions, it is important to 1) investigate the use of 

remote and proximal sensing techniques to monitor soil and crop behaviour; 2) comprehend the types 

of remote and proximal sensing techniques and their role in precision agriculture; 3) understand the 

crop spectral response and behaviour of vegetation indices under different growth conditions. In this 

study, all the above-listed points have been developed by focusing on the sweet maize (Zea mays L., 

var. Saccharata) crop, as it is one of the most important staple foods in the world that can be grown 

in a variety of environments. 

 

2.1. Use of remote and proximal sensing to monitor soil and sweet maize crop 

behavior 

Maize crop has a duplex attitude: a source of energy for animal diets as well as an alternative crop 

for the generation of biogas. Due to its high degree of adaptation to environmental factors and ease 

of planting, maize is grown in 170 different nations (Klein and Luna, 2022). Even though maize is a 

very adaptable crop, environmental factors have a significant impact on the production of maize 

grains as well as their qualitative characteristics (Finke et al., 1999). Water stress (drought) is one of 

the main abiotic stressors associated with climate change, and negatively affects the production and 

quality of many field crops (Alqudah et al., 2011; Lu et al., 2012). When non-limited water was 

accessible during the flowering and grain-filling periods, both maize grain production and protein 

content increased (Butts-Wilmsmeyer et al., 2019). In comparison to no-stress circumstances, severe 

water stress enhanced the protein content in maize while decreasing the grain yield and starch (Da Ge 

et al., 2010). 

Moreover, it was proved that an optimal supply of N fertilizer boosts crop yield and overall biomass 

production; however, at lower N fertilizer supplies, plants accumulate less dry matter in their 

reproductive organs, which lowers grain output (Monneveux et al., 2005). Thus, in order to guarantee 

enough grain crop production throughout the world and take into account global food security, water 
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and N supply is a key necessity (Thompson et al., 2015; Correndo et al., 2021). Corn is extensively 

cultivated in the Northern part of Italy and has about one million hectares and a mean grain yield of 

approximately 9.4 t ha−1, while in Central and Southern Italy, characterized by a Mediterranean 

climate, cultivation accounts for 130,000 ha and due to the water-limited conditions, the average grain 

yield is about 7.4 t ha−1 (ISTAT sources, 2006). 

Since this study on sweet maize was carried out in Southern Italy, which is one of the most water-

scarce regions in the world, irrigation management should be applied as a powerful strategy for 

increasing crop production and coping with the challenging climatic conditions (Piscitelli et al., 

2021). Furthermore, the application of both remote and proximal sensing can provide valuable 

information for maize crop management, particularly concerning the detection of water stress, N 

deficiency and diseases. Many previous studies confirmed the great potential of these techniques used 

in precision agriculture to fulfil the main aim, which is maximizing yields by giving the right amount 

of input at the right place and at the right time and, at the same time, reducing production costs and 

environmental impacts of agricultural practices (Pinter, 2003). For example, Gabriel et al. (2017) 

tested the suitability of proximal and airborne sensing for the assessment of maize N nutritional status 

and reported that higher accuracy was obtained with indices combining chlorophyll estimation 

with canopy structure. Hedley et al. (2010) applied proximal sensing methods for mapping soil water 

status in an irrigated maize field. Numerous recent research focused on using spectral reflectance 

answers to evaluate the water stress level of maize (Alvino et al., 2020; Kim, 2021; Martens et al., 

2021; Ndlovu et al., 2021; Spisic et al., 2022). Moreover, remote sensing techniques were 

successfully used, in maize crop, also in precision nitrogen management (Paiao et al., 2020; Kizilgeci 

et al., 2021; Wen et al., 2021), detecting different types of diseases in maize crop (Meng et al., 2020; 

Furuya et al., 2021) and light use efficiency (Gitelson et al., 2018; Liu et al., 2020).  

2.2. Remote sensing in precision agriculture (PA) 

The fourth revolution in agriculture is currently underway, largely thanks to developments in 

information and communication technologies (Delgado et al., 2019). Application and use of water, 

fertilizer, pesticides, seeds, fuel, labour, etc. are a few examples of how PA involves a management 

strategy that uses a variety of advanced information, communication, and data analysis techniques in 

the decision-making process. This helps to increase crop production while minimizing water and 

nutrient losses as well as adverse environmental effects. Data collection, analysis, and management 

are all part of precision agriculture, along with global positioning systems (GPS), geographic 
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information systems (GIS), Internet of things (IoT), Big Data analysis, artificial intelligence (AI), 

field location, yield monitoring, and sensor design (Mulla, 2013).  Remote sensing and proximal 

sensing, which are used to track and map agricultural lands throughout the world in a variety of 

conditions, are among the most effective tools for precision agriculture.  

For the sustainable management of natural resources at the local, regional, and national levels, 

researchers long time ago recognized the necessity to map soil and land use (Metternicht, 2018). The 

term "remote sensing" was first used in 1958.  

Remote and proximal sensing may be categorized according to (i) sensor platform and (ii) sensor type 

(Lechner et al., 2020). There are several platforms available for collecting remotely sensed data, 

including satellite, aerial (planes, unmanned aerial vehicles, etc.), and ground-based (handheld 

radiometers) (Vélez-Nicolás et al., 2021). They might be gathered by a variety of tools, such as 

sensors, digital cameras.  

The technology of remote sensing has advanced significantly as a result of the deployment of 

satellites. Sentinel 2, for instance, with a temporal resolution of 5–12 days, spatial resolution of 10–

60 meters, and 12 spectral bands encompassing the visible, near-infrared, and short-wave infrared 

spectrum, can greatly support management in agriculture, especially over the large areas (Zhang et 

al., 2017; Segarra et al., 2020). On the other hand, unmanned aerial vehicles (UAVs) have 

experienced a significant increase in use over the past ten years because of their flexibility and cost-

effectiveness for getting the high-resolution (cm-scale) photographs required for PA applications 

(Norasma et al., 2019). However, cloud cover frequently restricts the availability of remote sensing 

photographs from satellite and aerial platforms, whereas ground-based remote and proximal sensing 

is much less impacted by this restriction (Mulla, 2013). Ground-based platforms that are most often 

used in precision agriculture can be categorized into three groups: (i) hand-held, (ii) freestanding in 

the field, and (iii) installed on tractors or other farm equipment. Since ground-based platforms are 

situated much closer to the target surface (a land surface or plant) than aerial or satellite-based ones, 

they are also known as proximal remote sensing systems (Ferguson and Rundquist, 2018).  The 

attached sensors vary based on their spatial, spectral, radiometric, and temporal resolution (Sishodia 

et al., 2020).  

2.3.  Spectral reflectance and vegetation indices  

By definition, remote sensing refers to theory technology that allows the identification, measurement 

and analysis of objects of interest without physical contact (Campbell and Wynne, 2011). Remote 



 19 

 

sensing measures the amount of energy that is emitted from any surface. Electromagnetic waves are 

considered to be the transmitters of detection information. 

For each wavelength in the visible (400-750 nm), near-infrared (750-1200 nm), and shortwave 

infrared (1200-2400 nm) spectral regions, the ratio of the intensity of reflected light to the intensity 

of the irradiated light is used to characterize the object spectral signature (Li et al., 2014).  The 

percentage of irradiated light that is reflected by vegetation is known as reflectance. The crop spectral 

reflectance is affected by the properties of pigments, leaf physiological structure, and leaf water 

content (Reddy et al., 2001). In the visible range, the canopy has low reflectivity because of the 

significant absorption by photoactive pigments (chlorophylls, anthocyanins, and carotenoids). When 

compared to the blue, yellow, and red-light bands, which are absorbed by photoactive pigments, the 

green light band (550 nm), which is reflected rather efficiently, gives the leaves their green color. 

In healthy environment, the canopy displays a high reflectivity in the near-infrared wavebands (760-

900 nm) as a result of repeated scattering at the air-cell interfaces in the interior leaf tissue (Yang et 

al., 2007).  On the contrary, plants responses to stress alter how incident visible and NIR light is 

absorbed and reflected (Karteer and Knapp, 2001). The sharp rise in reflectance between the red and 

NIR regions is identified as the red-edge position (Tarpley et al., 2000).  Moreover, healthy leaves 

show poor reflectance in a wide range of shortwave infrared wavelengths due to absorption by water, 

proteins, and other carbon components. Likewise, plants emit radiation in thermal infrared band (≈10 

μm) according to their temperature. The fluctuation in spectral reflectance provides highly reliable 

information of crop status.   

Numerous vegetation indices (VIs) have been developed using different bands of the spectrum. These 

indices provide important information about plant structure and growth conditions. In most cases, the 

index is a sum, difference, ratio, or other linear combination of reflectance or radiance from two or 

more wavelength intervals (Wiegand et al., 1991). The broadband wavelength-based VIs are largely 

used in many studies. They were reported as indices suitable to detect nutrient deficiencies, as they 

are strongly correlated to Leaf Area Index (LAI) modifications and senescence (Broge and Leblanc, 

2001). Another group of vegetation indices is narrow-band VIs, the combination of narrow (<10 nm) 

bands. In particular, those based on red-edge position are strongly related to leaf chlorophyll content 

changes (Raper and Varco, 2015).  A third group is given by the water band indices, that use the 

reflectance based on NIR region at 950± 20 nm and provide valuable information about leaf and 

canopy water content (Sims and Gamon, 2003). 

In the following chapters, it will be given more information about previously described and grouped 

VIs, as well as their relationships with other important bio-physiological parameters.  
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Chapter 3 

Results and Discussions 

3.1. Characterization of soil spatial variability in the experimental site by 

using proximal EMI sensor 

 

3.1.1. Introduction  

Proximal, as well as other remote sensing techniques, offers an advanced array of methods for 

obtaining soil property information and determining soil variability for precision agriculture 

(Saifuzzaman et al., 2019). Lukas et al. (2011) reported that remote sensing may identify any changes 

in soil variability that affects crop growth. Numerous types of research have shown a high potential 

of remote sensing for monitoring spatial soil variability, with high resolution and performance 

(Thompson et al., 2004; Adamchuk et al., 2011; Mulder et al., 2011, 2013). Likewise, many on-the-

go soil-sensing instruments (Adamchuk et al., 2004) offer a great chance of studying spatial 

variability of measured parameters (e.g. electrical resistivity/conductivity, optical reflectance, 

mechanical resistance, etc.) allowing to identify homogeneous within-field areas. Among many 

proximal sensors for soil properties monitoring, electromagnetic induction (EMI) sensors are used 

for measuring apparent electrical conductivity (ECa) (De Benedetto et al., 2013). In-situ measurement 

of electrical conductivity has caused considerable interest as a potential technique in many soil 

applications; in particular, it has received substantial attention from precision agriculture (Corwin and 

Lesch, 2005). The ability to use on-the-go EMI sensors and map soil ECa at high resolution can 

support site-specific management (Hossain, 2008). 

3.1.2. Materials and methods 

3.1.2.1. Electromagnetic induction (EMI) measurements 

Electromagnetic induction (EMI) sensors are used to measure apparent electrical conductivity (ECa) 

in agricultural soils. For the purpose of this study, CMD Mini-Explorer (GF instruments), which 

measures ECa in mS m-¹, has been used (Fig.1 left). The CMD Mini-Explorer probe is 1.275m long, 

0.05m in diameter and weighs 1.8 kg. 

The Mini-Explorer is a low-frequency EM sensor and operates at 30 kHz; it has three receivers (Rx) 

coils (spaced 0.32 m, 0.71 m and 1.18 m from the transmitter (Tx) coil) and two coil arrangements; a 



 24 

 

horizontal coplanar (HCP) configuration (in the vertical dipole orientation or the ‘full depth’ range) 

and, when the instrument is rotated through 90°, a vertical coplanar (VCP) configuration (in the 

horizontal coil dipole orientation or the ‘half depth’ range) (Bonsall et al., 2013). 

Specifically, the manufacturer indicates that the instrument has an effective depth range of 0.25 m, 

0.5m and 0.9m for VCP in the horizontal coil dipole orientation (half depth range); this is extended 

to 0.5 m, 1.0m and 1.8m by rotating the orientation of the Tx/Rx coils by 90° to use HCP in the 

vertical coil dipole orientation (full depth range). 

As the CMD Mini-Explorer must be used in either the full depth (HCP, vertical dipole orientation) or 

the half depth (VCP, horizontal dipole orientation) mode, two surveys ‘sweeps’ are required over a 

given area if depth data from both dipole orientations are desired. The probe is used in conjunction 

with a control unit, which is usually connected via Bluetooth (which operates in the GHz band and 

does not impact the 30 kHz operating frequency of the EM sensor). The Bluetooth connection allows 

for either a pedestrian hand-held survey or a GPS-enabled sledge/cart-mounted survey if required. 

The instrument can be set up efficiently within 3 minutes. Internal temperature compensation 

automatically provides absolute calibration of apparent conductivity data prior to each line or profile 

of data collected, which limits drift across the dataset. The sensor can be held comfortably in one 

hand at the optimum probe height of approximately 0.05m above the ground in order to ensure 

maximum depth of penetration. The probe height can be adjusted using a telescopic handle when 

encountering sites of variable terrain or vegetation cover (Bonsall et al., 2013). 

3.1.2.2. Soil morphology 

Brief morphological analysis (identification of genetic horizons) of soil cores has been performed by 

the use of augers (20 cm core length). Soil samples were collected for each 20 cm soil depth interval 

(0-20; 20-40; 40-60; 60-80 cm), (Fig. 1-right). 

 

Figure 1. Apparent electrical conductivity (ECa) measurements using CMD Mini Explorer (left) 

and soil sampling (right) 
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3.1.3. Results and discussion  

3.1.3.1. Electrical conductivity  

In order to characterize the soil spatial variability of the experimental site, a geophysical survey was 

carried out using an electromagnetic induction (EMI) sensor (CMD Mini-Explorer) on 23rd January 

2020. 

EMI data were collected both at full depth (vertical coil dipole orientation by using horizontal 

coplanar configuration, HCP) and at half depth (horizontal coil dipole orientation by using vertical 

coplanar configuration, VCP) mode. After data pre-treatment and processing, maps of apparent 

electrical conductivity (ECa, mS m-¹) for different soil layers were produced using the Surfer 

software. In particular, measurements taken in the vertical coil dipole orientation provided a survey 

of ECa at depths of 50, 100 and 180 cm, whereas measurements taken in the horizontal coil dipole 

orientation provided a survey of ECa at 25, 50 and 90 cm. 

In Figure 2 and Figure 3, the ECa maps obtained by measurements taken in vertical and horizontal 

coil dipole orientation, respectively, are reported. From a visual inspection of the maps, a greater 

heterogeneity was observed in the upper soil layers (25 cm and 50 cm); in addition, the right side and 

the southern corner of the experimental field showed on average higher values of apparent electrical 

conductivity. 

 

Figure 2. ECa maps obtained by measurements taken in vertical coil dipole orientation showing 

depths of 50, 100 and 180 cm. In the legend, ECa values (mS m-¹) are reported. 
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Figure 3. ECa maps obtained by measurements taken in horizontal coil dipole orientation showing 

depths of 25, 50 and 90 cm. In the legend, ECa values (mS m-¹) are reported. 

 

Differences in apparent electrical conductivity can be related to variations in chemical and physical 

soil properties, such as soil water content, texture, salinity, and porosity. Therefore, in order to 

understand the causes of the observed variability, two soil transects were identified in the 

experimental site and nine soil cores were collected at distances of 6 m, as shown in Figure 4. The 

spatial variation from lower (green in the figure) towards higher apparent electrical conductivity 

corresponds to (i) the occurrence of Bt soil horizons (thus clay illuviated horizons) (ii) redder subsoil 

and (iii) an increase (although not always consistent) of soil depth. Consequently, on some soil core 

samplings, ECe, pH, texture and calcareous content was determined in the lab. 
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Figure 4. Soil sampling scheme with location of soil transects and number of sampling points. 

3.1.3.2. Soil characterization to define the experimental design 

The analysis of the soil samples, collected along the areas showing the maximum variation of the 

electromagnetic induction, indicated that all soils showed a texture varying from silty-clayey loam to 

silty (USDA), a sub-alkaline pH with moderate (5%) to high (10%) contents of calcium carbonate. 

Moreover, the areas having low electromagnetic induction values (ECa<20 mS m-¹) had shallow soils 

(50-60 cm) while those areas having higher electromagnetic induction values (e.g. ECa> 35 mS m-¹\) 

had deeper soils (up to 70-80 cm). Most interestingly these deeper soils showed the presence of an 

argillic horizon (Bt), that is a subsoil horizon characterized by clayey illuviation. 

These results, therefore, confirm an interesting correlation between electromagnetic induction values 

and soil morphology, with deeper and more fertile soils in areas with higher electromagnetic induction 

values. These results also highlight the great potential of using proximal geophysical sensors to better 

guide experimental agronomic trials. 

Then, further data analysis was performed to define the experimental design. To this aim, the 

information deriving from proximal electromagnetic induction sensor data, and from plant growth 

and yield recorded in previous years in the experimental site, were considered. The objective of this 

analysis was to identify within-field homogeneous portions in order to allocate the blocks of the 

experimental design. The EMI data collected at full depth, with vertical coil dipole orientation, which 

provided a survey of apparent electrical conductivity (ECa) at depths of 50 cm, 100 cm and 180 cm, 

were used in this analysis. 
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Data analysis was carried out according to the following procedure. Each dataset was firstly rasterized 

and then all three rasters were stacked into a single raster. Before applying the clustering procedure 

on the merged raster, the silhouette method was used with the aim of estimating the best-suited 

number of clusters. In fact, the (spatial) clustering procedure is intrinsically unable to estimate the 

right number of clusters underlying the spatial dataset; on the contrary, after the user provided a 

number of clusters, the cluster analysis segments the overall area into the best-suited sub-areas 

according to the number assessed by the silhouette method (Rousseeuw, 1987). 

The clustering method applied was the multivariate k-means (MacQueen, 1967). K-means clustering 

is a method of vector quantization that aims to partition n observations into k clusters in which each 

observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid). K-means 

clustering minimizes within-cluster variances (squared Euclidean distances) and maximizes variances 

between clusters. All the computations were carried out within the R environment (RStudio Team, 

2020; R Core Team, 2013) including the graphic representation section. 

Results of cluster analysis are reported in Figure 5 and in Table 1, where the mean values of ECa (mS 

m-¹) for the three clusters per each soil depth considered are reported. 

 

Figure 5. Maps of the three clusters identified in the experimental site using proximal EMI sensor 

data. 

Table 1. Mean values of ECa (mS m-¹) for the three clusters per each soil depth considered 

Cluster X50cm X100cm X180cm 

1 31.38983 18.59021 14.43719 

2 20.92742 16.95180 13.63745 

3 29.36374 26.23983 23.98930 

 

By a visual inspection of the map, the distribution of the three clusters seemed to resemble the main 

sources of variability observed for ECa in the shallower soil layer, which was characterized by the 
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greatest heterogeneity, with the right side and the southern corner of the experimental field showing 

on average the highest values. 

The main distinguishing behaviour was represented by the cluster “3” in the southern corner which 

showed the highest ECa values in all the three soil layers (Table 1); the other two clusters tended to 

show instead a greater overlapping. 

For this reason, and considering also the increasing trend of productivity moving from the northern 

to the southern portion of the field recorded in the previous years on the experimental field, the 

experimental area was divided into three transversal blocks (Fig.6). Afterwards, within the blocks, 

the treatments were allocated according to a hierarchical split-plot experimental design with water 

regime as the main plot factor and N as the sub plot factor (Fig.6). 

 

Figure 6. Layout of the experimental design. 

3.1.4. Conclusion 

Electromagnetic induction (EMI) was used to measure apparent electrical conductivity, as it is one of 

the most efficient and non-invasive proximal sensors for soil characteristics monitoring.  The obtained 

spatial variation from lower to higher apparent electrical conductivity may correspond to the 

occurrence of clay illuviated horizons, redder subsoil and/or an increase of soil depth. However, in 

order to understand the causes of the observed variability, the soil samples in certain soil transects is 

necessary. Our results highlighted the great potential of using proximal geophysical sensors to better 

guide experimental agronomic trials since an interesting correlation between electromagnetic 

induction values and soil morphology was found. Nevertheless, in order to define the experimental 

site, a part of the information deriving from proximal electromagnetic induction sensor data, plant 

growth and yield recorded in previous years in the experimental site, must be considered. 
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3.2. Selection of Hyperspectral Vegetation Indices for Monitoring Yield 

and Physiological Response in Sweet Maize under Different Water 

and Nitrogen Availability 

This chapter has been adapted from a previously published paper:  

Sellami, M. H., Albrizio, R., Čolović, M., Hamze, M., Cantore, V., Todorovic, M., Piscitelli, L & Stellacci, A. 

M. (2022). Selection of Hyperspectral Vegetation Indices for Monitoring Yield and Physiological Response in 

Sweet Maize under Different Water and Nitrogen Availability. Agronomy, 12(2), 489. 

 

 

Abstract:  

This study used hyperspectral reflectance data to evaluate the crop physiological parameters of sweet 

maize. Principal component analysis (PCA) was applied to identify the wavelengths that primarily 

contributed to each selected PC. Correlation analysis and multiple linear regression, with a stepwise 

algorithm, were used to select the best-performing vegetation indices (VIs) for monitoring the yield 

and physiological response of sweet maize grown under different water and nitrogen availability. The 

spectral reflectance measurements of crops were taken during the mid-season stage, for two 

consecutive growing seasons. The multivariate regression results showed that red-edge group indices, 

such as CARI (Chlorophyll Absorption Reflectance Index), DD (Double Difference Index), REIP 

(Red-Edge Inflection Point), and Clred-edge (Chlorophyll Red-Edge) indices were good predictors 

of yield and physiological parameters, confirming the crucial role of the red-edge spectral region that 

also emerged through PCA. Moreover, DD, REIP, and Clred-edge VIs were able to discriminate 

transient temporary stress at the mid-season stage, as well as to separate water and N stress levels. 

Therefore, hyperspectral reflectance VIs can provide valid information to growers, helping them 

identify and discriminate between different stress conditions. 

 

Keywords: hyperspectral proximal sensing; principal component analysis (PCA); multiple linear 

regression (MLR); variable selection; water and nitrogen deficiency 

3.2.1. Introduction  

Water and nitrogen (N) represent two major limiting factors for maize production (Li et al., 2020). 

Water stress acts directly on growth and development, photosynthesis, dry mass production; in 

addition, yield (Zhang and Zhou, 2019) might be severely diminished, especially if water deficiency 

is prolonged (Shin et al., 2015). Nitrogen is considered the most crucial nutrient for proper growth 
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and development, as it is the principal regulator of many physiological and biochemical processes, 

and is strongly linked to chlorophyll content (Maheswari et al., 2009; Massignam et al., 2009; Leghari 

et al., 2016;) and quantity of yield (Li et al., 2020). Matching N supply to water availability, both 

spatially and temporally, is essential to accomplish optimal crop response, offering opportunities for 

precision agriculture (Tilling et al., 2007). In recent years, proximal and remote sensing methods have 

been widely used as effective tools for precision agriculture, as they allow rapid, non-destructive 

monitoring of growth, along with both water and nutrient stress (Pinter et al., 2003). These methods 

can be efficiently utilized to measure vegetation’s spectral reflectance, which is related to biophysical 

and biochemical components (such as chlorophyll, nitrogen content, dry mass production, and water 

status) (Solari et al., 2008; Taghvaeian et al., 2012; Genc et al., 2013; Walsh et al., 2013; DeJonge et 

al., 2016).  

There are numerous biophysical, physiological, and biochemical crop parameters that can be 

monitored using spectral reflectance data generated by remote/proximal sensing techniques. Timely 

observation of plant biophysical properties and eco-physiological status, such as leaf area, 

chlorophyll, and nitrogen contents, have become critical to diagnose plant responses to environmental 

stress (Zhao et al., 2013; Din et al., 2017). 

All environmental stresses, such as water deficit, salinity, and nutrient deficiency, evoke a similar 

plant response, as they tend to decrease leaf area, and numerous stresses cause stomatal closure. As 

a result, diagnosing or monitoring the impact of a specific stress based on a single observed response 

is frequently challenging (Jones and Vaughan, 2010). 

The use of spectral signatures can reveal not only the pigment composition of the leaves, but also the 

leaf area, and even the canopy’s water content. In this case, stress responses can be detected and 

quantified using any or all of these spectral signature properties. However, many of the proposed 

spectral indices are rather limited in their applicability, because they were developed using empirical 

regression techniques for one specific experiment and cannot be easily extrapolated to other situations 

(Jones and Vaughan, 2010). Hence, any spectral index should be thoroughly validated for the specific 

site conditions (Jones and Vaughan, 2010).   

Crops under optimal growing conditions have a very high reflectance in the near-infrared region (NIR, 

760–900 nm), high in the green (520–600 nm), and low in blue (450–520 nm) and red (630–690 nm) 

spectra (Jain et al., 2007), where they absorb almost all of the incident light. Under stress conditions, 

plants change their absorption of incident light in the visible and NIR ranges (Carter and Knapp, 

2001; Mahajan et al., 2014). Therefore, the variation of reflectance in the green and far-red (690–720 

nm) spectra provides a particularly standard pigment-related response and provides reliable 

indications of stress conditions (Carter et al., 2002). 
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Field spectroradiometers can generate a continuous spectrum for any object (Li et al., 2020) because 

of their ability to collect spectral signatures in narrow (<10 nm) and contiguous wavelengths in the 

visible and near-infrared region; thus, they represent effective tools to estimate crop status (Feng et 

al., 2015), as well as morpho-physiological (Gomez-Casero et al., 2010) and biochemical plant traits 

at different phenological stages (Stellacci et al., 2016). 

However, weak spectral information, caused by crop structure characteristics and soil background 

conditions (Mahajan et al., 2014), as well as information redundancy due to the high degree of 

correlation of hundreds of neighbouring wavebands (Ye et al., 2008), poses a challenge in terms of 

data analysis and interpretation (Kale et al., 2017). For this reason, data pre-processing and analysis 

are essential to extract crucial information from raw spectral data and estimate crop status efficiently. 

The main approaches used to analyze hyperspectral data of vegetation are focused on the computation 

of vegetation indices (VIs), and on exploring the whole reflectance spectrum through multivariate 

statistical analysis methods. The analysis of the whole spectrum is usually aimed at identifying the 

narrow bands (optimal bands) able to capture most of the information on crops properties (Thenkabail 

et al., 2004; Jain et al., 2007; Stellacci et al., 2016). However, it can also be focused on extracting 

derived variables or factors capable of summarizing spectral information and predicting crop 

behavior. Principal component analysis (PCA) is the most-applied method among multivariate 

approaches. PCA is an unsupervised dimensionality-reduction method that is often used to reduce the 

dimensionality of the multivariate data set, while holding most of the variation within the data (Choi 

et al., 2004; Kale et al., 2017). Several studies on the investigation of hyperspectral plant response 

showed the effectiveness of PCA in coping with multicollinearity problems occurring along many 

wavelengths (Kale et al., 2017), and selecting important wavelengths crucial for discriminating the 

effects of N availability (Jain et al., 2007; Stellacci et al., 2012; Stellacci et al., 2016), water regimes 

(Ray et al., 2010), and plant diseases (Krezhova et al., 2017). 

Computation of VIs is among the most studied and widespread methods for crop status estimation 

from spectral reflectance data (Morcillo-Pallares et al., 2019). The most traditional VIs are those 

using broadband wavelengths. Among them, the most used are the Normalized Difference Vegetation 

Index (NDVI, Charlson and Ripley, 1997), which is strictly associated with variation of both leaf area 

index (LAI) and fractional vegetation cover, and all its alternatives, including the Soil Adjusted 

Vegetation Index (SAVI, Huete, 1988), the Optimized Soil Adjusted Vegetation Index (OSAVI, 

Rondeaux et al., 1996), and the Enhanced Vegetation Index (EVI, Huete et al., 2002). The last ones 

(SAVI, OSAVI and EVI) have been used to overcome the main constraints given by the disturbance 

of soil or background reflectance. The Green Normalized Difference Vegetation Index (GNDVI, 
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Gitelson and Merzlyak, 1998) is related to the fraction of active photosynthetic radiation intercepted 

by crops (Cristiano et al., 2010). 

All these indices have an intrinsic aggregated nature; this results in an evident loss of spectral 

information, which is available when analysing narrow spectral bands (Hansen and Schjoerring, 

2003). 

When moving from broadband toward hyperspectral sensors, more indices can be calculated; in the 

last four decades, many VIs, acquired by both ground and remote sensing, have been published 

(Glenn et al., 2008). Recently, Morcillo-Pallarés et al. classified VIs on the basis of their sensitivity 

towards (i) LAI, (ii) leaf chlorophyll content, and (iii) leaf water content. The broadband VIs belong 

mainly to the first group, strongly correlated to LAI modifications and senescence. In the second 

category are VIs such as the Transformed Chlorophyll Absorption in Reflectance Index (TCARI, 

(Haboudane, 2004), the Clgreen and Clred-edge chlorophyll indices (Gitelson et al., 2003; Gitelson et al., 

2006), chlorophyll red-edge (Wu et al., 2008), the double difference index (DD), and the double-peak 

index (DPI, (Main et al., 2011). The red-edge position has been found to have an excellent correlation 

to chlorophyll content, and it is obtained by the point of maximum slope between the red chlorophyll 

absorption region and the region of high NIR reflectance (Horler et al., 1983). The shape and position 

of the red edge are affected by chlorophyll content modifications, which are always strictly linked to 

change in leaves structure, and thus strongly influenced by variation in the water and nitrogen status 

of vegetation (Main et al., 2011). In the third group are VIs classified as water indices, such as the 

Water Band Index (WBI) and the Normalized Water Index (Prasad et al., 2007). These indices use 

the reflectance-based NIR region at 950± 20 nm, where there is a water absorption band and a 

reference wavelength reflectance at 900 nm. The ratio of these reflectance values can offer a powerful 

opportunity to assess the water status of vegetation (Peñuelas et al., 1997) 

Many VIs are designed for a diverse array of applications and research purposes, and often the 

similarity of acquired information requires the use of rigorous approaches to select the most 

informative and sensitive indicators for assessing plant status and the onset of stress conditions. 

Correlation analysis and multiple linear regression (MLR), through a stepwise algorithm, are 

commonly employed for this purpose. 

MLR is a statistical technique that uses several explanatory variables to predict the outcome of a 

response variable. The goal of MLR is to model the linear relationship between the spectral 

reflectance bands and crop characteristics (Hayes, 2021). MLR can be used not only to establish 

relationships between spectral VIs and investigated crop characteristics, but also to select the most 

informative variables for the estimation of crop properties (Stellacci et al., 2016). Previously 

published studies have reported MLR as a widely used method for rapidly estimating crop leaf N 
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concentration (Huang et al., 2004; Wang et al., 2010) and grain yield (Kefauver et al., 2017; Romero 

et al., 2017;). In detail, Gracia-Romero et al. (2017) used correlation analysis and MLR with a 

forward stepwise method to compare the capability of ground-based and aerially assessed VIs in 

predicting grain yield and leaf phosphorous content in maize. Kefauver et al. (2017) applied a 

stepwise selection algorithm to compare the capacity of the field and UAV-based RGB and 

multispectral indices to differentiate the nitrogen-related performance in barley. 

In this study, the sensitivity of spectral information, derived by both analysis of the whole spectrum 

and the computation of VIs, was investigated to describe the physiological and yield response of 

sweet maize under different water and nitrogen management. To this aim, the factors extracted 

through PCA and selected VIs were analysed using correlation analysis and MLR with a stepwise 

algorithm. In the following sections, their performance is assessed and discussed. 

3.2.2.  Materials and Methods 

3.2.2.1. Study Area 

Two-year research was conducted at the experimental field of the Mediterranean Agronomic Institute 

of Bari (IAMB) in Valenzano (41 ◦ 03 ′ N, 16 ◦ 53 ′ E, 77 m above sea level). The experimental site 

is characterized by typical Mediterranean climate conditions, with mild winters and hot, dry summers. 

The average annual precipitation is about 550 mm (30 years average), distributed mostly during 

autumn and winter. The average monthly air temperature ranges from 8◦ C in January to 24◦C in July 

and August. The soil of the study area is silty-clay-loam. Meteorological data were obtained from the 

weather station next to the experimental field. 

Sweet maize (Zea mays var. saccharata L., hybrid Centurion F1) was cultivated in the 2019 and 2020 

growing seasons in rows 0.5 m apart, with a distance between plants in the row of 0.2 m and a plant 

density of 10 plants per square meter. 

The crop was grown under three water regimes (WR) in combination with two N levels. Water 

regimes were: (i) full irrigation (I100), (ii) deficit irrigation (I50), and (iii) rainfed treatment (I0). Deficit 

irrigation was obtained by applying 50% of the irrigation requirements, while rainfed treatment was 

watered only once, immediately after sowing. N levels were: (i) 50 kg ha− 1 (low level - LN) and (ii) 

300 kg ha− 1 (high level-HN). 

Treatments were arranged in a split-plot experimental design, with three replicates, with water regime 

as a main-plot factor and N as a sub-plot, sized 10 × 10 m. 

Irrigation was performed by surface drip method, using a drip line for each row and drippers (2.2 L 

h− 1) spaced 0.20 m apart. Crop water balance and irrigation scheduling were managed using an Excel-
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based model (Todorovic, 2006) that estimates day-by-day crop evapotranspiration and irrigation 

water requirements through the standard procedure proposed by the FAO 56 document. As reported 

by Piscitelli et al. (2021), 8 and 12 irrigations were applied in the first and second year, respectively, 

with the corresponding seasonal irrigation amounts equal to 281 and 291 mm in I 100 treatments. 

Half of these amounts were applied in I50 treatments. 

In both years and before sowing, fertilizers were applied to the total cropping surface as follows: N, 

50 kg ha −1 as urea (46% of N); phosphorus (P2O5), 100 kg ha −1 as pyrophosphate (20% P2O5); and 

potassium (K2O), 200 kg ha−1 as potassium sulfate (51% K2O). At a sixth-leaf stage, N 250 kg ha−1, 

as urea, was supplied to the HN treatment. 

3.2.2.2. Measurements 

Leaf gas exchanges, leaf chlorophyll content, and vegetation reflectance measurements were taken at 

about one-week intervals, 5 times in 2019 (from the end of June to the end of July) and 4 times in 

2020 (from mid-July to mid-August), all of them within the mid-season stage. All measurements were 

acquired on clear sunny days around 11:00–13:00 h (solar time). 

3.2.2.2.1. Leaf Gas Exchange 

Net photosynthetic CO2 assimilation rate (A, µ mol m−2 s−1), stomatal conductance (gs, mol m−2 s−1), 

and leaf transpiration (Tr, mmol m−2 s−1) were measured using a portable open-system gas-exchange 

analyser (Li-6400XT (Li-Cor Biosciences, Lincoln, NE, USA)) provided by an external bottled CO2 

source supplying 400 µ mol−1 CO2 concentration inside the leaf chamber. The instrument software 

calculated the various gas-exchange parameters on the basis of the von Caemmerer and Farquhar 

model. Intrinsic water use efficiency (WUEi, µ mol−1) was calculated as the ratio of net photosynthetic 

rate to stomatal conductance. Measurements were taken on intact, healthy, green, and well-exposed 

leaves, over a clipped leaf surface of 6.0 cm2. Each measurement was replicated three times per plot. 

3.2.2.2.2. Leaf Chlorophyll Content 

The Chlorophyll Content Index (CCI) of leaves was indirectly measured by means of an optical meter 

(SPAD-502, Konica Minolta, Osaka, Japan) on 25 replicates per plot. 

3.2.2.2.3. Plant Reflectance 

Plant reflectance was measured by using a high spectral resolution ASD FieldSpec Hand-Held 2 

Spectro-radiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA). This instrument measures 

reflectance with a wavelength range of 325–1075 nm, an accuracy of ±1 nm, and a resolution of <3 
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nm at 700 nm. The field of view (FOV) of the bare fiber-optic probe was 25◦. The spectrum of a white 

(BaSO4) reference panel with known reflectance properties was acquired to derive the reflectance of 

the target. 

Measurements were acquired on three plants for each plot. The vegetation spectrum was measured 

from a distance of 10 cm above the crop, with a spot size of approximately 14 cm2. Gradually, as 

maize grew and expanded, the distance from the vegetation increased to 60 cm. Thereafter, data were 

processed by means of View Spec software. 

The reflectance data were restricted to the 395–1004 nm interval, which was considered noise-free. 

Then, statistical analyses were performed. The reflectance measurements were averaged over 10 nm 

to reduce collinearity and overfitting (Min and Lee, 2005). In this way, 61 derived reflectance 

variables were obtained; the name of the variables indicated the central wavelength. The spectral 

indices used in this study were computed from narrow bands reflectance measurements and are 

reported in Table 2. 

Table 2. Indices are derived from the hyperspectral visible and near-infrared wavelengths. 

Acronym Indices  Equation  Reference 

Broadband Greenness for Structure 

NDVI Normalized Difference Vegetation 
Index 

(R860 − R650) / (R860 + R650) Rouse et al.,1974 

mNDVI Modified Normalized Difference 
Vegetation Index 

(R775 – R670) / (R775 + R670) Jurgens,1997 

RDVI Renormalized Difference 
Vegetation Index 

(R800 − R670) / ((R800 + 
R670)0.5) 

Roujean and 
Breon (1995) 

SAVI Soil Adjusted Vegetation Index (R860 – R650) / (R860 + R650 
+ L) * (1 + L) 

Huete (1988) 

Low vegetation, L = 1, 
intermediate, 0.5, and high 0.25 

GNDVI Green Normalized Difference 
Vegetation Index 

(R860 − R550) / (R860 + R550) Gitelson and 
Merzlyak (1998) 

EVI Enhanced Vegetation Index 2.5*(R860 – R650) / (R860 + 
(6*R650) − (7.5*R470) + 1) 

Huete et al. 
(2002) 

OSAVI Optimized Soil Adjusted 
Vegetation Index 

(R860 – R650) / (R860 + R650 
+ 0.16) 

Rondeaux et al. 

(1996) 
Narrowband Greenness for Chlorophyll, Carotenoids, and light use efficiency 

CARI Chlorophyll Absorption Reflectance 
Index   

[(R700 – R670) – 0.2 × (R700 – 
R550)]  

Kim (1994) 

MCARI Modified Chlorophyll Absorption 
Reflectance Index 

[(R700 – R670) – 0.2 × (R700 – 
R550)] × (R700/R670) 

Daughtry et 

al.(2000) 
TCARI Transformed Chlorophyll Absorption in 

Reflectance Index 
3 × [(R700- R670) – 0.2 × (R700 – 

R550) × (R700/R670)] 
Haboudane et al. 

(2002) 
TCARI/OSAV

I 
Integrated TCARI and OSAVI    Haboudane et al. 

(2002) 
Clgreen Chlorophyll Indices (R730/R530) – 1 Gitelson et al. 

(2003) 
 

 Clred-edge (R850/R730) - 1 Gitelson et al. 
(2006)  

CIrededge710 Chlorophyll Red-Edge (R750/R710) - 1 Wu et al., 2008 

DD Double Difference Index (R749-R720)- (R701-R672)      Main et al., 2011 
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DPI Double Peak Index R688+R710/(R697)2 Main et al., 2011 

PSRI Plant Senescence Reflectance Index (R680-R500)/R750 Merzlyak et al. 

(1999) 
PRI Photochemical Reflectance Index (R531 – R570) / (R531 + R570) Gamon et al. 

(1992) 
SIPI Structure Insensitive Pigment Index (R800-R445) / (R800-R680) Penuelas et 

al.(1995) 
REIP Red-Edge Inflection Point 700+40*[(((R670+R780)/2)-R700) / 

(R740-R700)] 
Vogelmann et al., 

1993 

NDRE Normalized Difference Red-Edge (R790-R720) / (R790+R720) Barnes et al. 
(2000) 

RVSI Red-Edge Vegetation Stress Index (R714 + R752)/2 – R733 Merton and 
Huntington 

(1999) 
Canopy Water Content 

WBI Water Band Index R970/R900 Wang et al., 2007 

NWI1 Normalized Water Index (R970 − R900)/(R970 + R900) Babar et al. 
(2006) NWI2 (R970 − R850)/(R970 + R850) 

WBI:NDVI    WBI/NDVI Peñuelas et al. 
(1997) 

R represents the reflectance value at specified wavelengths in nm. 

3.2.2.2.4.  Fresh Grain Yield 

Harvesting was completed on 9 August and on 3 September in the first and in the second years, 

respectively, when grain reached about 30% in dry matter, by sampling 2 m2 in the middle of each 

plot. The total weight of the ears was determined after the removal of the bracts. Fresh grain yield is 

reported in the text as GY. 

3.2.2.2.5.  Agronomic Water Productivity 

Agronomic Water Productivity (WP) was calculated as the ratio of fresh grain yield to the total 

amount of water supplied (irrigation and rainfall) and expressed as kg m−3. 

3.2.2.2.6.  Plant Nitrogen Uptake 

At maturity, 10 plants per plot were harvested and the fresh weight was measured for the 

determination of total biomass. The dry plant was ground, and aliquots were weighted in tubes for 

digestion prior to total N determination through the Kjeldahl method. Plant nitrogen uptake 

(NUptake) was calculated as the product of N percentage by dry weight. 

3.2.2.3.  Statistical Analysis 

Dependent variables—fresh grain yield (GY), agronomic water productivity (WP), and nitrogen 

uptake (NUptake)—were preliminarily evaluated for normal distribution and homogeneity of 
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variance according to the Kolmogorov–Smirnov test and Bartlett’s test, respectively. Since the 

normality assumption was violated, factorial nonparametric analysis of variance for mixed designs 

was used by applying the Aligned Rank Transform analysis. Analysis of variance from the 3 × 2 

factorial experiments in a split-plot design was then conducted, and the significance of differences 

was tested using Fisher’s Least Significant Difference (LSD) at a 5% probability level. This analysis 

was carried out using the software packages agricolae (De Mendiburu, 2009) and ARTool (Wobbrock 

et al., 2022) in R studio software (R Core Team). This package is available via the Comprehensive R 

Archive Network (CRAN, https://cran.r-project.org (accessed on 12 April 2020)). 

A multivariate analysis approach was applied to select the optimal spectral bands using XLSTAT 

2020 (Addinsoft, New York, NY, USA, (Addinsoft, 2021). Principal component analysis (PCA) was 

performed on 61 derived variables from the mid-season stage of each growing season. PCA was 

carried out on the correlation matrix of 61 variables to obtain a few new components, explaining most 

of the variation of the initial spectral data. PCA outputs included treatment component scores and 

variable loadings for each selected component. 

The Principal Components (PCs) with eigenvalues greater than one, and cumulatively explaining 

more than 90% of the total variance, were selected for the ordination analysis (Dunteman, 1989); 

variable loadings were examined to identify the wavelengths that most contributed to each selected 

component (Matus et al., 1999). Within each extracted component, the five bands with the highest 

loadings (in absolute value) were selected (Jain et al, 2007). 

The Pearson correlation was used to determine the relationship between GY, WP, NUptake, 

physiological parameters (A, gs, Tr, WUEi, and LCC), vegetation indices, and the components 

extracted using PCA. This analysis was carried out using the software package Corrplot (Friendly, 

2002) in R studio software. 

The multiple linear regression using the stepwise technique was applied to explain GY, WP, NUptake, 

and physiological variables variation from VIs across different water supplies and nitrogen treatment 

on both growing seasons, satisfying the criteria of probability-of F-to-enter ≤ 0.05 and probability-

to-remove ≥ 0.05. The overall model’s performance was evaluated by its coefficient of determination 

(R2), a measure of the proportion of variance in variables estimated that can be predicted by the 

explanatory variables (VIs). This analysis was carried out using a regression analysis procedure of 

SAS software (University Edition, SAS Institute, Inc., Cary, NC, USA). 
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3.2.3.  Results 

3.2.3.1. Agronomic Water Productivity, Nitrogen Uptake and Yield Response 

Table 3 reports the results of the analysis of variance for fresh grain yield (GY), agronomic water 

productivity (WP), and plant nitrogen uptake (NUptake) for two consecutive growing seasons. The 

rainfed treatment did not reach the reproductive stage because of strong and prolonged drought. The 

GY of both growing seasons varied significantly in relation to the amount of available water. In 2020, 

GY increased as a consequence of N fertilization, but in 2019 this increment only showed a trend 

towards significance (p = 0.08). In both seasons, GY was almost the same in the full irrigation 

treatment, with the production of about 15 t ha−1. GY was 72.2% and 44.9% less in the I50 treatment 

for the 2019 and 2020 growing seasons, respectively, compared to the full irrigation treatment. In 

both years, the interaction between water regime and nitrogen level was not significant for GY. 

WP was strongly affected by the N level in both growing seasons. By increasing the water supply 

from I50 to I100, WP increased more than double in 2019 and no significant change was observed in 

2020. Under a high amount of N, as an average of I50 and I100 treatments, WP was 28 and 32.5% 

higher than under a low amount of N, for the 2019 and 2020 growing seasons, respectively. 

N uptake was significantly and positively affected by the increase in water and N supply and 

considerably higher in 2019 than in 2020. A significant interaction was also observed between WR 

and N levels in both growing seasons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 41 

 

Table 3. Effects of irrigation regime and nitrogen levels on fresh grain yield (GY), agronomic water 

productivity (WP) and nitrogen uptake (NUptake) of sweet maize plants grown in 2019 and 2020. 

Treatment 

GY WP NUptake 

(t ha-1) (kg m−3) (kg ha-1) 

2019 2020 2019 2020 2019 2020 
Water 

Regime (WR) 
Nitrogen(N)             

I0 
 
 

  

Low  - - - - 62.81 ± 4.04 d 39.57 ± 2.81 d 

High  - - - - 69.38 ± 8.86 d 52.67 ± 6.4 cd 

Average 

  
  - - - - 66.09 ± 7.14 b 46.12 ± 8.43 b 

I50 
  

  
  

Low  2.66 ± 0.95  7.56 ± 0.51  1.03 ± 0.37 c 3.74 ± 0.25  155.38 ± 26.81 c 94.49 ± 15.38 bc 

High  6.20 ± 0.09  9.74 ± 1.64  2.39 ± 0.03 b 4.82 ± 0.81 215.18 ± 16.29 b 195.9 ± 14.23 a 

Average 

  
  4.43 ± 2.03 b 8.65 ± 1.61 b 1.71 ± 0.78 b 4.28 ± 0.80  185.28 ± 38.29 a 145.2 ± 57.1 a 

I100 
  
  
  

Low  15.88 ± 0.28 13.33 ± 2.08  3.97 ± 0.07 a 3.84 ± 0.60  159.8 ± 27.76 c 107.76 ± 14.27 b 

High  16.02 ± 1.81  18.09 ± 1.31  4.00 ± 0.45 a 5.21 ± 0.38  280.58 ± 29.52 a 223.04 ± 41.34 a 

Average 

  
  15.95 ± 1.16 a 15.71 ± 3.04 a 3.98 ± 0.29 a 4.53 ± 0.87  220.19 ± 70.95 a 165.4 ± 68.94 a 

Significance               
Water Regime 
(WR) 

  * ** * ns ** ** 

Nitrogen (N)   ns  * * ** **** **** 
WR x N 
  

  ns ns * ns **** ** 

ns, *, **, and **** denote not significant or significant at p ≤ 0.05, 0.01, and 0.0001, respectively. Means followed by 
different letters in each column are significantly different according to the LSD test (p = 0.05). Reported values are 
averages of three replicates. 
 

3.2.3.2. Optimal Spectral Bands 

Table 4 shows the results of the principal components analysis carried out on 61 (10 nm) bands. The 

first two principal components (PCs) were associated with eigenvalues higher than one and explained 

97.12 and 97.16% of the total variance in the 2019 and 2020 growing seasons, respectively. The first 

component was dominated by red-edge and green in 2019, and by red-edge and blue in 2020. The 

second component was dominated by NIR for both growing seasons. 
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Table 4. Results of PCA carried out on the 61 (10 nm) bands. For the mid-season phenological 

stage, the spectral bands with the largest loadings on the selected principal components (PCs) are 

reported. 

Growing 

season 

Percentage of 

variance explained 
Bands centers (nm) with largest PC loadings 

PC1 PC2 PC1 PC2 

2019 71.49 25.63 530 540 550 720 730 780 790 800 860 870 

2020 78.63 18.53 420 430 440 720 730 760 770 780 790 800 

 

3.2.3.3. Optimal Vegetation Indices 

Correlations amongst variables were firstly checked using a Person correlation matrix (Fig.7). From 

this matrix, VIs were checked for correlation with yield, WP, NUptake, and physiological variables 

(A, gs, WUEi, Tr and LCC). For both growing seasons, the second principal component (F2, 

summarizing the contribution of NIR wavelengths) showed a strong positive relationship (r > 0.4) 

with all variables, except yield and WP in 2020. The first principal component (F1, summarizing the 

contribution of red-edge and green in 2019, and blue in 2020) showed a weak negative relationship 

with LCC in 2019 and a moderate negative relationship with WUEi in 2020. 

The water indices (WBI, NWI1, NWI2, and WBI:NDVI) were strongly negatively correlated with 

NUptake and physiological variables for both growing seasons, except for NWI2 and WBI:NDVI, 

which were not correlated with LCC in 2020. In addition, in 2019, WBI, NWI1, and WBI:NDVI were 

strongly negatively correlated with yield and WP, while no significant correlations were observed in 

2020. 

The chlorophyll indices (Clgreen, Clred-edge, and Clred-edge710), DD, and DPI showed a strong positive 

relationship with yield, WP, NUptake, and physiological variables for both growing seasons except 

for: (i) Clgreen, which was not correlated with GY and WP in 2020; (ii) Clred-edge, which was not 

correlated with WUEi in 2020; and (iii) DPI, which was not correlated to either GY or WP in 2019, 

nor to GY, gs, Tr, or LCC in 2020. 

For broad-band greenness indices (NDVI, RDVI, SAVI, OSAVI, GNDVI, and EVI) there were 

strong positive relationships with yield, WP, NUptake, and physiological variables for both growing 

seasons, except for GY and WP, which had no correlations in 2020, except for GNDVI. Also, EVI 

was not correlated with GY or WP in 2019, or with WUEi in 2020. 
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Figure 7. Correlations coefficients among fresh grain yield (GY), agronomic water productivity 

(WP), nitrogen uptake (NUptake) and physiological variables and vegetation indices for 2019 and 

2020 growing season. 

Table 5 shows stepwise regression models explaining GY, WP, NUptake and physiological variables 

variation from VIs across different water supplies and nitrogen levels in 2019 and 2020 growing 

seasons.  

The best VIs explanatory variables to predict GY were DD and CARI indices in 2019 and 2020, 

respectively. However, the determination coefficients (R2) of the regression model were low with 

values of 0.18 in 2019 and 0.14 in 2020. Similar results were obtained for WP; in addition, in 2020 

also PSRI was selected, although it explained only a low portion of total variance. In 2019, 57% of 

the NUptake was explained by DD and water indices (WBI and NWI2), whereas in 2020, 40% of the 

NUptake was explained by DD index alone. 

Among the five vegetation indices (DD, PSRI, OSAVI, MNDVI, RVSI) selected to predict the 

photosynthesis assimilation (A) in 2019, the DD gave the most accurate estimation of A (R2 =0.64). 

In 2020, 54% of A was explained by REIP and WBI indices. In particular, REIP outperformed WBI 

index in providing an accurate estimation of A (R2 =0.48). 
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In 2019, DD index provided a greater explaining capability of conductance (gs) as compared to 

NWI2, while in 2020, REIP gave more accurate estimation of gs than NWI1 and NWI2 (R2 =0.42). 

The best model with two (Clred-edge710 and WBI: NDVI) and three (REIP, NDRE and WBI:NDVI) 

indices was selected to predict WUEi in 2019 and 2020 growing season, respectively. The ratio 

WBI:NDVI provided the most accurate estimation of WUEi with a R2
 of 0.37 and 0.31 in 2019 and 

2020, respectively. 

In 2019, 60% of Tr was explained by RDVI and NDRE indices with RDVI index giving the most 

accurate estimation of Tr (R2 =0.56). On the other hand, DD, WBI and NWI2 were selected to predict 

Tr in 2020 with DD index explaining 48% of the data variation of Tr.  

In 2020, 69% of the total variation in LCC under different N supply and water regimes was explained 

by PRI, GNDVI, Clred-edge and WBI indices, with the chlorophyll index (Clred-edge) providing the most 

accurate estimation of the response variable (R2=0.56). In 2019, 48% of the LCC was explained by 

REIP index alone. 

Table 5. Multivariate regression models explaining fresh grain yield (GY), agronomic water 

productivity (WP), nitrogen uptake (NUptake), and physiological variables from vegetation indices 

(VIs) across different water supplies and nitrogen treatment in the 2019 and 2020 growing seasons. 

Year 
Response 

variables 
VIs Coefficients 

p-

value 

Portion 

of 
variation 

Year 
Response 

variables 
VIs Coefficients 

p-

value 

Portion of 

variation 

2019 GY 
Interc
ept -0.500 0.873   2020 GY Intercept 20.104 

< 

0.000
1   

  

(R2 = 0.18  

Radj
2 = 

0.16) DD 16.773 0.0008 1   

(R2 = 0.14  

Radj
2 = 

0.13) CARI 

-94.762 0.007

8 1 

                        

  WP 
Interc
ept 0.559 0.396     WP Intercept 6.849 

<.000
1   

  

(R2 = 0.18  

Radj
2 = 

0.17) DD 3.589 0.0007 1   

(R2 = 0.38  

Radj
2 = 

0.35) CARI -28.119 
<.000

1 0.32 

                 PSRI -25.064   0.047 0.06  

  NUptake 

Interc

ept 2852.72 <.0001     NUptake Intercept 51.555 

<.000

1   

  

(R2 = 0.57  
Radj

2 = 

0.56) DD 113,25 0.038 0.02   

(R2 = 0.40  
Radj

2 = 

0.39) DD 638.45 

<.000

1 1 

    WBI 
-

3266.25 <.0001 0.52             

    NWI2 1456.42 0.005 0.03             

  A 

Interc

ept 

-

148.048 <.0001     A Intercept 
-1493.387 

0.001

8   

  

(R2 = 0.77  
Radj

2 = 

0.76) PSRI 217.972 0.0082 0.02   

(R2 = 0.54  
Radj

2 = 

0.53) REIP 

2.457 

< 

0.0

001 0.48 
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OSA

VI 

-

951.677 <.0001 0.04     WBI 
-251.036 

0.0

03 0.06 

    

MND

VI 928.678 <.0001 0.04             

    RVSI 

-

132.312 <.0001 0.04             

    DD 100.540 <.0001 0.64             

                        

  gs 

Interc

ept -0.435 0.0196     gs Intercept -12.726 

0.0

026   

  

(R2 = 0.56  

Radj
2 = 

0.55) DD 0.353 <.0001 0.54   

(R2 = 0.51  

Radj
2 = 

0.49) REIP 0.018 

0.0

027 0.42 

    NWI2 -1.393 0.0496 0.02     NWI1 -15.460 
0.0
027 0.05 

                NWI2 8.018 

0.0

173 0.04 

                        

  WUEi 
Interc
ept 650.856 <.0001     WUEi Intercept -33427 

<.0
001   

  

(R2 = 0.40  

Radj
2 = 

0.39) 
WBI:
NDVI 

-
393.984 <.0001 0.37   

(R2 = 0.55  

Radj
2 = 

0.53) REIP 48.306 
<.0
001 0.12 

    

Clred-

edge7

10 -63.419 0.0444 0.03     NDRE -2702.998 

<.0

001 0.08 

                

WBI:ND

VI -338.300 

<.0

001 0.31 

                        

  Tr 

Interc

ept -9.712 <.0001     Tr Intercept 185.980 

0.0

002   

  

(R2 = 0.60  

Radj
2 = 

0.59) RDVI 12.230 <.0001 0.56   

(R2 = 0.59  

Radj
2 = 

0.58) DD 14.365 

0.0

004 0.48 

    

NDR

E 12.219 0.0040 0.04     WBI -186.011 

0.0

002 0.06 

                NWI2 188.534 
0.0
034 0.05 

                        

  LCC 

Interc

ept -22399 <.0001     LCC Intercept -1297.836 

0.1

258   

  

(R2 = 0.48  
Radj

2 = 

0.47) REIP 32.007 <.0001 1   

(R2 = 0.69  
Radj

2 = 

0.67) PRI 4227.144 

0.0

005 0.03 

                GNDVI -1423.275 

0.0

004 0.03 

                

Clred-

edge 2020.674 

<.0

001 0.56 

                WBI 2036.023 
0.0
118 0.05 
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From the results of stepwise regression analysis, the linear regressions showing the highest explaining  

capability of some physiological variables (net assimilation, stomatal conductance and leaf 

chlorophyll content) with the VIs are presented in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Linear regression parameters between net assimilation (a-b), stomatal conductance (c-d) 

and Double Difference Index (DD) and Red-edge Inflection Point (REIP), respectively. Linear 

regression parameters between leaf chlorophyll content (e-f) and Red-edge Inflection Point (REIP), 

Chlorophyll Index (Clred-edge), respectively. Each value is the mean of three replicates. 
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3.2.4. Discussion 

3.2.4.1. Fresh Grain Yield, Agronomic Water Productivity and Nitrogen Uptake 

Water and nitrogen (N) have been recognized as two primary limiting resources for maize production 

(Raun and Johnson, 1999; Plett et al., 2020). The maximum fresh grain yield values for well-irrigated 

and fertilized treatments were 16.0 and 18.1 t ha−1 in the 2019 and 2020 growing seasons, 

respectively. As a consequence of severe drought experienced by the crop in both years (seasonal 

precipitation was 119 and 56 mm in 2019 and 2020, respectively), the rainfed treatment did not reach 

the reproductive stage, because of either abortion of the floral ovary at the time of pollination, or, 

even worse, the failure of many silks to emerge from the husks, preventing fertilization. Several other 

studies (e.g., (Setter et al., 2001; Gustin et al., 2018; Song et al., 2019)) reported that intense and 

prolonged water shortage in maize seriously compromises yield due to the lack of pollination. 

As an average of the two years, WP ranged from 3.0 kg m−3 in I50 to 4.26 kg m−3 in I100 , which means 

that, under deficit irrigation conditions, less grain was produced per volume of water, compared with 

well-irrigated conditions. The WP values found in our study are similar to those reported by Kresovic 

et al. (2014) for maize cultivated in Serbia under different irrigation regimes. Similar to our findings, 

Farré and Faci (2006) reported that the WP of maize decreases with decreasing irrigation volumes in 

a Mediterranean area. 

The highest values of NUptake were obtained in fully irrigated and fertilized regimes, with values of 

280.6 kg ha−1 and 223.4 kg ha−1 in 2019 and 2020, respectively. NUptake in fully irrigated and low 

fertilized treatment decreased by 43% in 2019 and 51% in 2020. However, values in the I50 HN 

treatment averaged 215.2 kg ha−1 in 2019 and 195.9 kg ha−1 in 2020, reduced by 28% and 52% in the 

I50 LN treatment, respectively. Hence, our results highlight the importance of N fertilization and 

optimum water supply, which can facilitate crop N uptake, as irrigation increased N uptake and the 

ability of maize to efficiently use N from the soil. The results of our study confirm previously reported 

findings by several authors (Wang et al., 2010; Hammad et al., 2016). Plant N uptake is facilitated 

through optimum irrigation; thus, both nitrogen and water use efficiencies may be simultaneously 

improved. 

3.2.4.2. Spectral Reflectance 

The principal component analysis (PCA) was conducted to identify optimal spectral bands for 

separating different combinations of water and N availability at the mid-season stage of both growing 

seasons. Reflectance in the green region is controlled by leaf color, whereas the wavebands in coastal 

blue are related to chlorophyll absorption, which peaks at 430–450 (Min and Lee, 2005). Wavebands 
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from the red-edge region are the most sensitive to stress-induced changes. The shape of the red-edge 

region has been shown to be strongly influenced by chlorophyll content, such that an increase in leaf 

chlorophyll content causes a shift in the red-edge position towards longer wavelengths (Delegido et 

al., 2013). The red-edge wavelength ranges between 690 and 750 nm; the occurrence of a sharp 

change in reflectance indicates a transition from chlorophyll absorption to leaf scattering (Clevers et 

al., 2002). Moreover, the differences in red edge position (up to 10 nm) in many studies were 

explained as the result of various factors, such as water stress (Ballester et al., 2019; Zhang and Zhou, 

2019), nutrient deficiency (Zhao et al., 2005), plant disease (Gazala et al., 2013), etc. On the other 

hand, the internal leaf structure controls the NIR. The separation between coastal blue or green and 

red-edge, on one side, and NIR on the other side, were reported by several authors on many species 

(Wang et al., 2008; Stellacci et al.,2016; Abbasi et al., 2019). The difference in spectral behaviour in 

the visible region could be due to differences in the concentrations of biochemical substances, such 

as chlorophyll, carotenoid, nitrogen, and water, in the intra- and extracellular leaf structure. Therefore, 

healthy vegetation can be identified by high NIR reflectance and low visible reflectance, and even 

more precisely by analysing reflectance in narrow bands. The selection of optimal wavelengths 

through principal component analysis in our study underlined the separation between visible and NIR 

reflectance, and the role of red-edge region wavelengths in characterizing the sweet maize response 

to water and nitrogen stress in both growing seasons. 

3.2.4.3.  Spectral Indices 

Multiple linear regression, with a stepwise algorithm, was used to select the VIs most able to estimate 

fresh grain yield, physiological variables, water productivity, and N uptake. The poor performance of 

the stepwise algorithm in selecting VIs for some response variables (GY and WP), also confirmed by 

the low R2 and Radj2 values, might be attributed to the high influence of collinearity of the predictors 

(Grossman et al., 1996). As Strachan et al. (2002) reported, several VIs are needed to detect the stress 

status and health of maize. Many studies found that red-edge-derived indices outperformed broadband 

indices (Gupta et al., 2013; Putra and Soni, 2017; Imran et al., 2020). However, in our study, 

broadband indices (NDVI, RDVI, SAVI, OSAVI, GNDVI, and EVI) show strong positive 

correlations with all investigated variables. This finding is in agreement with previous studies (Jiang 

et al., 2006; Ranjan et al., 2012; Bolton and Freidl, 2013; Ghosh et al., 2018). In the multivariate 

regression results, the red-edge group indices, such as CARI, DD, REIP, and the Clred-edge chlorophyll 

index, were observed to be better predictors, particularly of yield and physiological parameters (A, 

gs, and LCC) at the midseason stage, when differences among water supplies and nitrogen treatment 

are mainly related to chlorophyll content. This result confirms the role of the red-edge spectral region 
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that emerged from the principal component analysis. The DD, REIP, and Clred-edge VIs can be used to 

discriminate temporary stress at the mid-season stage, or separate levels of water and N stress. 

Generally, these indices are sensitive to small variations of chlorophyll content and are reliable for 

most species, due to the presence of the red-edge region (Peng and Gitelson, 2013; Clever and 

Gitelson, 2013; Schlemmer et al., 2013). As previously reported, the high sensitivity to chlorophyll 

content highlights the importance of using red-edge-based VIs to characterize plant N deficiency and 

N requirement in the mid-season stage of sweet maize. According to Vogelmann et al. (1993), the 

red-edge position is related to environmental, developmental, and genetic factors that result in altered 

chlorophyll levels, and the red-edge position does not necessarily diagnose one particular type of 

stress. Here, the shift in red-edge position may be related to changes in the width of the maximum 

chlorophyll absorption in the red spectral region (Rock et al., 1988), caused by the reduced activity 

of chlorophyll, and lower photosynthetic capacity as a consequence of low nitrogen supply. In 

addition, Ramachandiran and Pazhanivelan (2015) reported similar results. A relatively strong 

negative correlation was found between CARI index and its derivatives (MCARI, TCARI and 

TCARI/OSAVI) and both yield and physiological parameters (A, gs, and LCC), especially in the 

2020 growing season. Zhang et al. showed a similar negative correlation between the MCARI index 

and leaf chlorophyll content. In addition, at later development stages close to harvest, when structural 

indices are not responsive to yield variability, the hyperspectral indices related to chlorophyll status 

(CARI and its derivatives) better reflect within-field yield variability (Zarco-Tejada et al., 2005). 

Besides that, our results demonstrated a strong positive correlation between chlorophyll indices 

(Clgreen, Clred-edge and Clred-edge710), DD and DPI, and physiological parameters, in agreement with some 

previous studies (Le Maire et al., 2004; Ju et al., 2010; Raper and Varco, 2014). This result confirms 

the critical role and sensitivity of the red-edge region (680–780 nm) to chlorophyll and nitrogen (Wu 

et al., 2008; Li et al., 2014; Wang et al., 2016).  

A negative correlation was found between canopy water VIs and both NUptake and physiological 

parameters (Fig. 7). Water VIs are described in the literature as effective indicators of water stress 

and show a strong correlation with physiological variables (Ihuoma and Madramootoo, 2019; 

Cateregli et al., 2020), as was observed in our study. Under short-time water stress, crops adopt photo-

protection strategies to prevent damage; however, under prolonged water stress, chlorophyll pigments 

are affected and changes in leaf optical properties occur (Zhang and Zhou, 2019). Generally, 

wavelengths between 900 and 1300 nm have strong correlations with leaf water content (Carter, 1991) 

and are effective predictors, as they can penetrate into canopies better than the rapidly-absorbed 

higher wavelengths (Sims and Gamon, 2003). 
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The canopy water content vegetation indices (WBI and WBI:NDVI) use the reflectance at 970 nm to 

indicate water absorption and a reference wavelength reflectance at 900 nm. This wavelength is used 

because there is no absorption by water at 900 nm, but it is subjected to the same changes in sample 

structure as the reading at 970 nm (Ihuoma and Madramootoo, 2017). Several authors show (Danson 

et al., 1992; Penuelas et al., 1993; Govind et al., 2005) that the WBI is higher in the initial or later 

stages of a nitrogen-stressed crop. According to Ramachandiran and Pazhanivelan (2015), the plants 

with high nitrogen status have lower values of WBI, and vice versa. 

A decrease in NIR reflectance for stressed plants is mainly due to a decrease in LAI and green biomass 

(Govind et al., 2005), and reduced turgidity of the spongy-mesophyll layer in rainfed crops, compared 

to the turgidity levels of fully irrigated crops (Ramachandiran and Pazhanivelan, 2015). However, as 

the degree of absorption at 970 nm rises compared to 900 nm, the water content of plant canopies 

increases (Penuelas et al., 1995). On the contrary, under water-stress conditions, the 970 nm trough 

of the reflectance spectrum tends to shift towards lower wavelengths. 

3.2.5. Conclusions 

The results of this study demonstrated that hyperspectral reflectance can be used as a tool to detect 

the water and nitrogen status of sweet maize, even if no single index can describe the complexity of 

the eco-physiological behaviour of vegetation. The most effective indices to assess the combined 

effect of nitrogen and water stress in maize were red-edge-based VIs, such as CARI, DD, REIP, and 

Clred-edge chlorophyll indices. Therefore, the use of spectral data at the mid-season stage could enhance 

precision agriculture by identifying stress patterns, and aid growers in making good decisions; for 

instance, allowing supplemental water and nutrient application to mitigate adverse stress effects. 

The relationship between the spectral signature and the target variable might be affected by the 

structural properties of the canopy (i.e., plant size, age, and leaf angle) and physiological status, in 

response to biotic and abiotic stressors. Thus, in future perspectives, the integrated use of information 

derived from different sensors could help in discriminating the effects of multiple stresses on crop 

response. 
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3.3. Hyperspectral Vegetation Indices to Assess Water and Nitrogen Status 

of Sweet Maize Crop 

This chapter has been adapted from a previously published paper:  

Colovic, M., Yu, K., Todorovic, M., Cantore, V., Hamze, M., Albrizio, R., & Stellacci, A. M. (2022). 

Hyperspectral Vegetation Indices to Assess Water and Nitrogen Status of Sweet Maize Crop. Agronomy, 12(9), 

2181. 

 

Abstract: The deployment of novel technologies in the field of precision farming has risen to the top 

of global agendas in response to the impact of climate change and the possible shortage of resources 

such as water and fertilizers. The present research addresses the performance of water and nitrogen-

sensitive narrow-band vegetation indices to evaluate the response of sweet maize (Zea mays var. 

saccharata L.) to different irrigation and nitrogen regimes. The experiment was carried out in 

Valenzano, Bari (Southern Italy), during the 2020 growing season. Three irrigation regimes (full 

irrigation, deficit irrigation, and rainfed) and two nitrogen levels (300 and 50 kg ha−1) were tested. 

During the growing season, a Field Spec Handheld 2 spectroradiometer operating in the range of 325–

1075 nm was utilized to capture spectral data regularly. In addition, soil water content, biometric 

parameters, and physiological parameters were measured. The DATT index, based on near-infrared 

and red-edge wavelengths, performed better than other indices in explaining the variation in 

chlorophyll content, whereas the double difference index (DD) showed the greatest correlation with 

the leaf–gas exchange. The modified normalized difference vegetation index (NNDVI) and the ratio 

of water band index to normalized difference vegetation index (WBI/NDVI) showed the highest 

capacity to distinguish the interaction of irrigation x nitrogen, while the best discriminating capability 

of these indices was under a low nitrogen level. Moreover, red-edge-based indices had higher 

sensitivity to nitrogen levels compared to the structural and water band indices. Our study highlighted 

that it is critical to choose proper narrow-band vegetation indices to monitor the plant eco-

physiological response to water and nitrogen stresses. 

 

Keywords: vegetation reflectance; bio-physiological crop parameters; red-edge; water band indices; 

narrow-bands spectral indices; water and nitrogen stress 
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3.3.1. Introduction 

Water and nitrogen (N) have long been known as two primary restricting inputs for crop production. 

Water stress directly affects crop growth and productivity (Osakabe et al., 2014; Zhang and Zhou, 

2019; Yuan et al., 2020; Piscitelli et al., 2020). According to several studies, crops in many regions, 

especially in the Mediterranean and other arid and semi-arid areas, experience severe effects of 

drought (Moriondo et al., 2011), which causes yield loss. Therefore, various studies have aimed to 

identify and assess the performance of water stress indicators and strategies for water use optimization 

(Holzman et al., 2011; Mladenova et al., 2017). Additionally, the application of essential nutrients in 

the optimal quantity is necessary to improve the crop growth and development; nitrogen is considered 

the most vital nutrient by having a fundamental role in the biochemical and physiological functions 

of plants (Massignam et al., 2009; Leghari et al., 2016; Maheswari et al., 2017). Normally, N deficit 

causes a decrease in biomass and leaf chlorophyll concentration, and an increment in leaf reflectance 

in the chlorophyll absorption bands of the visible part of the electromagnetic spectrum (Ranjan et al., 

2012).   

The interaction of water and nitrogen affects the biochemical and biophysical processes from the 

environmental to the molecular level. Some findings have shown that water–nitrogen interactions 

mainly affect the crop yield, grain size, protein content, root depth, and root-to-shoot translocation 

(Sadras et al., 2016; Cossani et al., 2018). Hence, matching N supply to water availability, both 

spatially and temporally, is essential to accomplish an optimal crop response, maximizing the 

efficiency of N application (Tilling et al., 2007). Consequently, the development of sustainable and 

efficient strategies is a priority for producers facing water shortages and nutrient deficiency (Bell et 

al., 2018).  As proximal and remote sensing methods enable rapid, non-destructive water and nutrient 

deficiency determination, they have been widely used in precision agriculture (Pinter et al., 2003).   

Hyperspectral remote sensing, which records the radiation in hundreds of narrow contiguous spectral 

channels reflected from any feature, is an accurate technique to regain valuable information for 

applications in precision agriculture (Singh et al., 2020). Such information provides significant 

progress in understanding the subtle changes in the biochemical and biophysical attributes of the crop 

and their different physiological processes, which otherwise are indistinct in multispectral remote 

sensing (Sahoo et al., 2015). Many studies have shown the high effectivity of narrow-band vegetation 

indices (VIs) to evaluate the crop biophysical parameters (Monteiro et al., 2012; Zhu et al., 2020), 

especially if the spectral and canopy structure information are integrated (Li et al., 2022).  However, 

little is known about which VI can distinguish between the stress of different origins such as water 

and N, when combined. 
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Narrow-band vegetation indices have been favourably included in studies aiming to estimate the crop 

nitrogen concentration (Hansen and Schjoerring, 2003; Stroppiana et al., 2009; Chen et al., 2010; 

Yao et al., 2010), leaf chlorophyll content (Gitelson et al., 2005; Delegido et al., 2005; Vincini et al., 

2011),  light-use efficiency (Inoue et al., 2008; Garbulsky et al., 2010), as well as detect water stress 

(Ceccato et al., 2002; Zarco-Tejada et al., 2013; Ihouma, 2020) and diseases (Apan et al., 2004; Ray 

et al., 2011; Calderon et al., 2013). The narrowband VIs use reflectance in red and infrared bands to 

collect the red-edge section of the spectrum. These indices provide information on numerous 

vegetation and environmental variations such as the leaf area index, leaf chlorophyll content, and 

background soil reflectance (Zou et al., 2018).  For instance, the normalized difference red-edge index 

(NDRE) is considered susceptible to chlorophyll content changes in the leaves, variability in leaf 

area, and soil background effects (Fitzgerald et al., 2006; Thomposon et al., 2019; Boiarskii et al., 

2019); the red-edge normalized difference vegetation index (RENDVI) has been shown to be superior 

to the normalized difference vegetation index (NDVI) for the late-season nitrogen determination 

(Shaver et al., 2017); and the modified chlorophyll absorption ratio index (MCARI) has been 

recommended as a valuable index that may afford upgraded sensitivity to nitrogen availability and 

soil moisture over NDVI (Perry and Davenport, 2007; Robersts et al., 2016). Additionally, 

concerning the water absorption properties, many reports have highlighted the great potential of water 

indices to estimate the crop water content and detect crop water stress (Penuelas et al., 1995; Zhao et 

al., 2011; Wang et al., 2015; McCall et al., 2017).  

Previous studies have shown that near-infrared and red-edge reflectance might lower the background 

influence and have excellent possibilities to predict the chlorophyll content, which helps to precisely 

determine the nitrogen quantity (Daugtry et al., 2000; Yang et al., 2003). Numerous studies have 

been conducted to relate the vegetation indices to the crop physiological and biometric parameters 

and a large number of relationships between them have been found (Casanova et al., 1998; Aparicio 

et al., 2000; Wang et al., 2005; Riedel et al., 2005; Tsonev et al., 2014; Sivia-Perez et al., 2018; Chen 

et al., 2020; Sellami et al., 2022). Some findings have confirmed that spectral reflectance could be 

suitable for monitoring the photosynthetic parameters of crops (Heckmann et al., 2017; Yendreck et 

al., 2017). Additionally, Weber et al. (2012) proved the high relevance of hyperspectral indices in 

predicting the maize grain yield. As maize has high water and nitrogen requirements, this crop needs 

proper water and nutrient management during all growth stages (Yuan et al., 2020). Nevertheless, the 

problem of saturation in predicting crop biophysical parameters has been found for many spectral 

indices (Haboudane et al., 2004). It is not clear whether the current water and nitrogen indices can 

indicate the high water and nitrogen requirements in maize. 
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In this study, the canopy spectral reflectance data from the field spectrometry and bio-physiological 

measurements were simultaneously collected. The overall objective was to assess the performance of 

various narrow-band vegetation indices and sensitivity to different irrigation and nitrogen levels and 

their interaction. The specific objective was to find the best correlation in determining which 

vegetation index is the most efficient predictor of the crop eco-physiological parameters. The findings 

of this study will provide essential information for the non-destructive, real-time monitoring and 

assessment of sweet maize water stress and nitrogen deficiency using hyperspectral VIs. 

 

3.3.2. Materials and Methods 

3.3.2.1. Study Area and Experimental Design 

The study was carried out in the 2020 growing season in Valenzano, Bari (41◦ 03′ N, 16◦ 53′ E, 77 m 

above sea level), Southern Italy, at the Mediterranean Agronomic Institute (IAMB) experimental 

field. 

The climate of the location is typical of the Mediterranean, with moderate winters and dry summers. 

The average yearly precipitation is around 550 mm (30 years average), with most precipitation falling 

during the autumn and winter months. The average monthly air temperature varies from 8◦C in 

January to 24◦C in July and August. The research area’s soil is silty-clay-loam (Staff, 2014). 

The average values of the main physical and chemical soil properties are: sand 170 g kg−1, clay 234 

g kg−1, silt 596 g kg−1, USDA Textural Class: silty-loam; pH (H 2 O 1:2.5) 8.1, electrical conductivity 

(1:2) 0.24 dS m−1, total carbonate 55 g kg−1, organic C 11.6 g kg−1, total N 0.9 g kg−1, C/N ratio 12.9, 

available P 17 mg kg−1, K exchangeable 465 mg kg−1 (Piscitelli et al., 2021). 

Sweet maize (Zea mays var. saccharata L.) was grown on 18 plots (sized 10 × 10 m) from June to 

September 2020, in rows-oriented north-south, 0.5 m apart and with a spacing between plants in the 

row of 0.2 m, with a plant density of 10 plants m−2. 

Three irrigation regimes (WR) were used in combination with two N levels. The irrigation regimes 

included: (i) full irrigation (I100); (ii) deficit irrigation (I50), which applied half of the crops’ water 

needs; and (iii) rainfed treatment (I0). The amounts of nitrogen were: (i) 50 kg ha−1, which is a low 

level (LN) and (ii) 300 kg ha−1, which is a high level (HN). The rainfed treatment received only one 

watering after sowing. Treatments were allocated in a split-plot experimental design with three 

replicates, considering the irrigation regime (WR) as the main-plot factor and the N level (N) as the 

sub-plot factor. 
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Before sowing, the fertilizers were applied to the whole experimental area as follows: nitrogen (N) 

50 kg ha−1 as urea (46% of N), phosphorus (P2O5)—100 kg ha−1 as superphosphate (20% P2O5), and 

potassium (K2O)—200 kg ha−1 as potassium sulfate (51% K2O). On 22 June, 250 kg ha−1 of additional 

nitrogen as urea was supplied to HN treatment. The weeding control was conducted by milling before 

sowing and manually during the first growth stage. 

During the experiment, a standard set of daily meteorological data (air temperature, relative humidity, 

solar radiation, wind speed and precipitation) was obtained from the weather station located next to 

the experimental field (Fig. 9). The average daily temperature (Tavg) ranged between 19 and 29◦C, 

while the reference evapotranspiration (ETo) was between 1- and 5.6-mm d−1. The total amount of 

precipitation was 56 mm, with the highest value of 23.6 mm recorded on 17 days after sowing (DAS). 

The crop evapotranspiration increased with the biomass growth until the flowering and initial maturity 

stages, and then it reduced approaching the harvesting (data not shown). Hence, the overall water 

deficit between crop evapotranspiration and precipitation increased during the growing season, which 

provoked strong water stress under rainfed cultivation. 

Irrigation was performed by the surface drip method system using a drip line for each row and 

drippers (2.2 L h−1) 0.50 m spaced apart. Crop water balance and irrigation scheduling were managed 

using an Excel-based model (Todorovic, 2006) that estimates day-by-day crop evapotranspiration 

and irrigation water requirements through the standard procedure proposed by Allen et al. (1998). 

Irrigation amounts of 291.2 mm were supplied in 12 waterings in the I100 treatment, while half of 

these amounts were applied in the I50 treatment. 

 

Figure 9. The daily precipitation, reference evapotranspiration (ETo), and average temperature 

(Tavg) during the crop growing cycle of sweet maize. 
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3.3.2.2. Measurements 

All of the physiological measurements listed below were simultaneously taken five times from mid-

July to the end of August. 

3.3.2.2.1. Leaf Gas Exchange 

A portable open system photosynthesis system (Li-6400XT, LiCor, Lincoln, NE, USA) was used to 

measure the net photosynthetic CO2 assimilation, (An, µ mol m−2 s−1 ) and stomatal conductance to 

water vapor (gs, mol m−2 s−1 ) over a clipped leaf surface of 6.0 cm2 on the intact, healthy green, and 

well-exposed up-leaves at solar noon (between 10:30 and 12:30 solar time). A saturating 

photosynthetic photon flux density (PPFD) of 2000 µ mol m−2 s−1 was used as the light source. To 

keep the CO2 content in the leaf chamber at 400 µ mol mol−1 , an external bottled CO2 source was 

employed. The von Caemmerer and Farquhar (1981) model was used to determine the different gas-

exchange parameters (e.g., leaf transpiration (Tr, mmol m−2 s−1 )) in the instrument software. The 

measurement was repeated three times per plot. 

3.3.2.2.2. Leaf Chlorophyll Content 

An optical meter (SPAD-502, Konica Minolta, Osaka, Japan) was used to measure the leaf 

chlorophyll content index (CC, r.u.) on 15 leaves per plot. 

3.3.2.2.3. Relative Water Content 

The relative water content (RWC) was measured in up-leaves blades similar to those used for the gas 

exchange measurements. At midday, nine leaf segments were gathered from three plants in each plot. 

Leaf-blade segments were weighed to obtain the fresh weight (FW, g), kept in distilled water 

overnight at 4 ◦ C to obtain the saturated weight (SW, g), and then weighed again. Afterward, they 

were dried at 80 ◦ C for 48 h and the dry weight (DW, g) was measured. Finally, the RWC was 

calculated as follows: 

RWC = 
!"#$"

%"#$"
𝑥100  (1) 

 

3.3.2.2.4. Crop Reflectance 

The crop reflectance was measured using a FieldSpec Handheld 2 spectroradiometer (Analytical 

Spectral Devices, Inc., Boulder, CO, USA). This spectroradiometer is designed to collect spectra with 

a resolution of <3 nm at 700 nm, accuracy of 1 nm, and a wavelength range of 325–1075 nm. 
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The field of view (FOV) of the bare fiber-optic probe was 25◦ . The spectrum of a white (BaSO4 ) 

reference panel with known reflectance properties was acquired to derive the reflectance of the target. 

Ten spectra readings were averaged to obtain a single reflectance measurement. The measurements 

were acquired on three plants for each plot, at midday, under clear sky conditions. The crop spectrum 

was taken from a distance of 10 cm of height, with a spot size of about 14 cm2 , and as the canopy 

cover grew and expanded, the distance from the vegetation increased to 60 cm. 

The VIs were computed for each plot to analyze the relationships with the physiological crop 

parameters and evaluate their performance in distinguishing the water and nitrogen levels. These VIs 

were chosen on the basis of their sensitivity to (i) canopy structure; (ii) chlorophyll and other 

photosynthetic pigments; (iii) crop nitrogen status; and (iv) water status. However, in our study, the 

criteria for index selection were conducted on the previously successful use of them in numerous 

studies, as presented in Table 6. 

 

Table 6. The indices derived from the hyperspectral visible and near-infrared bands. 

Description Abbreviation Formulation Reference 

Narrow-Band Water and Nitrogen Sensitive Indices 

Red-edge inflection point REIP 

700 + 40 × [(((R670 + 

R780)/2) − R700)/ 

(R740 − R700)] 

Guyot et al., 1988 

Normalized difference red-edge NDRE (R790 − R720)/(R790 + R720) Barnes et al., 2000 

Narrow-band Normalized 

Difference Vegetation Index 
NNDVI (R775 − R670)/(R775 + R670) Perry et al., 2008 

Modified chlorophyll absorption 

reflectance index 
MCARI 

[(R700 − R670) − 0.2 × 

(R700 − R550)] × 

(R700/R670) 

Daughtry et al., 2000 

DATT index DATT * (R760 − R720)/(R760 − R670) 
Shiratusuchi et al., 

2011 

MERIS terrestrial chlorophyll 

index 
MTCI * (R760 − R720)/(R720 − R670) 

Shiratusuchi et al., 

2011 

Chlorophyll indices 

Cl 

Clgreen  

Clred-edge 

Cl = (R880/R590) − 1 

Clgreen = (R730/R530) − 1 

CIred-edge = (R850/R730) − 1 

Shiratusuchi et al., 

2011 

Double difference index DD 
(R749 − R720) − (R701 − 

R672) 
Le Maire et al., 2004 

Structure intensive pigment index SIPI (R800 − R445)/(R800 − R680) Penuelas et al., 1995 

Water band index WBI R900/R970 Peñuelas et al., 1997 

Ratio water band index and 

normalized difference vegetation 

index 

(WBI/NDVI) 

(R900/R970)/ 

[(R800 − R680)/(R800 + 

R680)] 

Peñuelas et al., 1997 

* DATT and MTCI indices were computed according to the equations reported in [69]. 



 65 

 

3.3.2.2.5. Canopy Temperature 

The canopy temperature (Tc) was measured by a thermal imaging camera (FLIR B335, Wilsonville, 

OR, USA) with a 640 by 480-pixel resolution and 2% accuracy reading, the emissivity of 0.95, and 

the distance to the focal plane of 0.4 m. Thermal images were collected on three plants for each plot, 

between 11:00 and 13:00 (solar time) at 0.10 m from the crop, focusing as much as possible on the 

plant without soil disturbance in the background. Images were elaborated using FLIR Tools software 

for leaf temperature extraction. Canopy temperature was determined as the average temperature for 

each image. 

3.3.2.2.6. Leaf Area Index and Dry-Above Ground Biomass 

The leaf area index (LAI) was measured by using an optical leaf area meter (Li-COR, 3100, Lincoln 

NE, USA) on three plants for each plot. Dry-above ground biomass (DAGB) was measured on the 

same plants used for the LAI measurements. Samples were weighed after placing them in an oven at 

70◦C for 48 h. 

3.3.2.2.7. Fresh Grain Yield and Irrigation Yield Water Use Efficiency 

The harvesting was conducted on 3 September 2020, when the grain reached about 30% in dry matter, 

sampling 2 m2 in the middle of each plot. 

The irrigation yield water use efficiency (IWUEY ) was calculated as the ratio of marketable yield and 

seasonal irrigation volume. 

3.3.2.2.8. Statistical Analysis 

The variables under study (vegetation indices VIs) were evaluated for normal distribution according 

to the Shapiro–Wilk W test and for homogeneity of variance using Bartlett’s test. Multiple data taken 

over time on different plots were analyzed using a repeated-measures ANOVA approach to identify 

the effect of between-subject and within-subject factors on the measured variables. The general linear 

model (GLM) procedure was used. The vegetation indices (Table 1) were considered as dependent 

variables and the fixed factors (water treatment, nitrogen treatment and time) as categorical 

independent variables. The sphericity within all possible pairs was evaluated using Mauchly’s test. 

The Greenhouse–Geisser adjustment was used to test the within-subject effects if Mauchly’s test 

revealed that the assumption of sphericity was untenable since it was the case for a few variables. 

The Student–Newman–Keuls (SNK) post hoc (α = 0.05) test was used to make pairwise comparisons 

among the sample means group when significant differences were observed with ANOVA. 
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Moreover, simple linear regression analysis was applied to assess the relationship between the crop 

physiological and biometric data and vegetation indices, while the coefficient of determination (R2 ) 

evaluated the strength of the relationships. All statistical analyses were performed using the R 

programming language (R Core Team). 

3.3.3. Results 

3.3.3.1. Crop Water Status, Yield, and Irrigation Yield Water Use Efficiency 

In the beginning, all treatments had similar values, ranging from 64 to 73% (Fig. 10). However, after 

flowering, sweet maize under rainfed conditions experienced severe drought stress, which caused a 

remarkable reduction in the RWC. The peak RWC value of 82% was reached on 66 DAS in I100 HN. 

Plots under full irrigation treatment and high level of nitrogen (I100 HN) showed the greatest fresh 

yield (18.09 t ha−1), while the yield of the same irrigation treatment (I100) with a low nitrogen level 

(LN) was reduced by 26%. The water deficit treatments provided a yield of 9.74 and 7.56 t ha−1 under 

high and low nitrogen supply, respectively; these values were lower compared to the corresponding 

fully irrigated treatments. The yield reduction under deficit irrigation conditions was due to the 

decrement in the mean grain weight, the lessening in the number of ears, the weight of the ears, and 

grains per row (data not shown). Moreover, crops under rainfed conditions were strongly affected by 

the absence of water (irrigation or precipitation), particularly at the flowering stage; such severe water 

stress did not allow for the formation of grains. Irrigation yield water use efficiency (IWUEY) 

summarized these results: the greatest values were recorded for I50  HN (6.7 kg m−3) and for I100 HN 

(6.2 kg m−3), while under the corresponding treatments without N, reductions of 22 and 26% were 

observed. The lowest value of IWUEY was detected in I100 LN. 

 

Figure 10. Variation in the relative water content (RWC) during the growing season of sweet maize 

for different water and nitrogen treatments. 
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3.3.3.2. Crop Reflectance and Vegetation Indices 

A noteworthy difference in reflectance was observed between treatments experiencing stress and 

those well-watered. The crop spectral reflectance increased more rapidly in the infrared region and 

the slope of the red-edge became steeper, especially in the treatments under full irrigation and high 

nitrogen level, where a shift to longer wavelengths and an increase in the amplitude of the red-edge 

peak (Fig. 11) were observed. The values of spectral reflectance for non-stressed plants were higher 

in the range from 710 nm to 950 nm compared to the plants under stress. 

 

Figure 11. The average values of the spectral reflectance of sweet maize for different treatments, 

during the tasseling stage (73 DAS): (a) and (b) are the irrigation regimes under high nitrogen (HN) 

and low nitrogen (LN), respectively; (c) is the interaction among both full irrigation and rainfed 

treatments with nitrogen levels; (d) is the interaction among all the six treatments. 

 

ANOVA allowed us to compare the sensitivity of the vegetation indices to different treatments and 

their interactions (Tab. 7). 
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Table 7. The analysis of variance of 13 vegetation indices (VIs) for different irrigation regimes, 

nitrogen levels, and the day after sowing (DAS) of sweet maize. 

 
Source of 

Variation 
Irrigation Nitrogen DAS 

Irrigation  

× Nitrogen 

Irrigation 

× 

DAS 

Nitrogen 

× 

DAS 

Irrigation 

× Nitrogen 

X DAS 

Num DF 2 1 4 2 7 4 7 

Vegetation 

Indices (VIs) 

REIP <0.0001 *** 0.0016 ** 0.0064 ** 0.5635 ns <0.0001 *** 0.8752 ns 0.2969 ns 

NDRE <0.0001 *** <0.0001 *** 0.0024 ** 0.6831 ns <0.0001 *** 0.6765 ns 0.1399 ns 
NNDVI 0.0123 * 0.9880 ns <0.0001 *** 0.0475 * <0.0001 *** 0.0799 ns 0.4282 ns 

MCARI 0.5690 ns 0.0031 ** 0.0033 ** 0.5833 ns 0.0509 ns 0.3546 ns 0.4752 ns 

Cl 0.0020 ** 0.0094 ** <0.0001 *** 0.1668 ns 0.0153 * 0.6765 ns 0.1394 ns 
Clgreen 0.0173 * 0.0709 ns <0.0001 *** 0.0503 ns 0.06499 ns 0.1100 ns 0.1260 ns 

Clred-edge <0.0001 *** <0.0001 *** 0.0670 ns 0.8384 ns <0.0001 *** 0.8025 ns 0.0422 * 

DD <0.0001 *** 0.0025 ** <0.0001 *** 0.2713 ns <0.0001 *** 0.7092 ns 0.5311 ns 
DATT <0.0001 *** <0.0001 *** <0.0001 *** 0.65108 ns <0.0001 *** 0.00524 ** 0.39118 ns 

MTCI <0.0001 *** <0.0001 *** <0.0001 *** 0.3292 ns <0.0001 *** 0.8102 ns 0.1174 ns 

SIPI 0.0219 * 0.1610 ns <0.0001 *** 0.4588 ns 0.0050 ** 0.2390 ns 0.5465 ns 

WBI <0.0001 *** 0.3500 ns 0.0095 ** 0.2520 ns <0.0001 *** 0.0934 ns 0.2770 ns 
WBI/NDVI <0.0001 *** 0.8780 ns <0.0001 *** 0.0381 * <0.0001 *** 0.217 ns 0.2158 ns 

Not significant (ns); significant at p ≤ 0.05 (*), p ≤ 0.01 (**), and p ≤ 0.001 (***). 

 

All indices, except for MCARI and CI green , were significantly affected by irrigation and the effect 

varied over time (interaction irrigation × DAS). 

The nitrogen levels significantly affected the red-edge based indices (REIP, NDRE, MCARI, CI red-

edge , DD, DATT, MTCI, together with CI), whereas the structural (NNDVI, CI green ) and water 

band indices (WBI, WBI/NDVI) did not vary significantly. The highest discriminating capability was 

shown by NDRE, CI red-edge , DATT, and MTCI. 

Among all of the indices tested (Tab.8), the NNDVI and WBI/NDVI indices had the best ability to 

differentiate the interaction of irrigation x nitrogen, showing a greater discriminating capability under 

low nitrogen. CI red-edge was the only index affected by the interaction between irrigation, nitrogen, 

and DAS. 

Table 8. The effect of the interaction of irrigation x nitrogen on the vegetation indices. 

Index Nitrogen Irrigation   
  I0 I50 I100 

NNDVI 
LN 0.71c 0.76ab 0.79a 

HN 0.75b 0.75ab 0.76ab 

WBI/NDVI 
LN 1.47a 1.3bc 1.24c 

HN 1.36b 1.31bc 1.29bc 
Means followed by different letters were significantly different at p = 0.05. 
 

Figure 12 shows the trend in the vegetation indices during the growing season as a function of the 

irrigation regime (interaction irrigation × DAS). Red-edge indices (Figure 12a,c–g) showed a similar 

behavior: since V12–V14, the values of I 0 treatment started to gradually decrease, while those of the 
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two irrigated treatments started to differentiate after the tasseling stage with a more evident decrease 

for I50 compared to I100 . This behavior was more marked at 66 DAS for both CI red-edge (Figure 

12a) and MTCI (Fig.12e). The CI index (Fig.12b) decreased for I 0 during the crop cycle with 

significant differences at 58 DAS, while lower values were observed only at 79 DAS for I50; I100 

treatment maintained almost constant values along the growing cycle. The trend of the NDVI index 

(Fig.12i) was smoothed for both irrigated treatments, while the values of the rainfed treatments 

significantly decreased from 0.80 to 0.61. The SIPI index (Fig.12h) displayed similar values for all 

irrigation treatments throughout the growing season. The WBI index (Fig.12j) showed a similar, but 

the specular trend to the red-edge indices, in particular, to REIP and DATT (Fig.2c,d), with values 

slightly increasing under water stress progressing and during the growing season. 

 

Figure 12. Variation in the CI red-edge (a), CI (b), REIP (c), DATT (d), MTCI (e), and DD (f). 

NDRE (g), SIPI (h), NNDVI (i), and WBI (j) during the growing season of sweet maize for 

different water and nitrogen treatments. 
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3.3.3.3. Correlation between Variables 

Correlations among VIs (Tab.6) and both biometric and physiological parameters were checked using 

a Pearson correlation matrix (Fig.13). Among all of the analyzed indices, MTCI, DATT, and DD 

showed the strongest positive correlation with the chlorophyll content (CC). Similarly, LAI, as well 

as the gas-exchange parameters, showed the highest correlation with indices such as REIP, DD, 

NDRE, DATT, and MTCI. The WBI and WBI/NDVI displayed a negative correlation with all of the 

analyzed parameters, except for canopy temperature (Tc). However, canopy temperature had a 

moderately negative correlation with CIgreen . 

 

Figure 13. The correlation matrix for the bio-physiological parameters and vegetation indices for 

sweet maize. 

 

The simple linear regression model was applied to link the measured eco-physiological variables and 

VIs. Among the parameters, the greatest coefficient of determination was found between the DATT 

index and chlorophyll content (R2 = 0.51) as well as between the DD index and net assimilation rate 

(R2= 0.4) (Fig.14a,b). 
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Figure 14. The linear regression parameters between the (a) DATT index and leaf chlorophyll 

content (Chl content); (b) DD index, and net assimilation rate (An). 

 

3.3.4. Discussion 

3.3.4.1. Differentiation between Drought and Nitrogen Deficiency 

The experiment was carried out to evaluate the performance of the narrow-band vegetation indices to 

different water and nitrogen regimes and their interactions. The NNDVI and WBI/NDVI indices were 

highly affected by the interaction of water and nitrogen, showing the highest capability to distinguish 

low nitrogen treatment. On the other hand, in the interaction of irrigation and DAS, all indices were 

significantly affected, except for MCARI and CIgreen. The red-edge-based indices (REIP, NDRE, 

MCARI, CIred-edge, DD, DATT, MTCI, combined with CI) were significantly impacted by the nitrogen 

levels, while the structural (NNDVI, CIgreen) and water band indices (WBI, WBI/NDVI) were not. 

Even though in our study the NNDVI separated the low nitrogen treatments, Shiratsuchi et al. (2011) 

showed a larger variation of this index due to the water supply and low ability to distinguish nitrogen 

treatments. It was previously confirmed that NNDVI performed better over many structural and 

narrow-band indices in detecting crop water stress (Kim et al., 2011) and monitoring crop health 

(Sims et al., 2003). However, due to the relatively lower sensitivity to biomass and greater sensitivity 

to the crop chlorophyll content, Raper and Varco (2015) suggested that the red-edge-based indices be 

used as a more appropriate tool to determine the crop deficiency or demand for nitrogen fertilizer. 

Nitrogen deficiency causes red-edge reflectance and the peak of the first derivative of reflectance in 

the red-edge to shift toward shorter wavelengths. 

Furthermore, spectral reflectance is less impacted by chlorophyll absorption characteristics beyond 

730 nm in the NIR, and would only vary if the leaf morphology or water content changed in response 

to the stress (Raper and Varco, 2015). The effect of water absorption is better detected near 970 nm 
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if the stress is well-developed and in short-wave-infrared (1400–2500 nm) wavelengths (Garriha et 

al., 2014). Water indices (WBI and WBI/NDVI) were found to be the most sensitive for 

distinguishing the water stress levels in crops (Ihuoma and Madramootoo, 2019). In comparison with 

WBI, the WBI/NDVI ratio has a stronger relationship with the crop water status because the NDVI 

is affected by structural and color changes (loss of pigments) in the irrigated plants, and is therefore 

indirectly related to the crop water content (Trunda et al., 2015). 

Many studies have reported the trends of VIs under different water levels. For example, Ma et al. 

(2022) found a correlation between the crop water status parameters and the CIred-edge and REIP 

indices, highlighting that the red-edge position has a high potential value for studying the canopy 

indices of drip irrigated cotton. Likewise, Zhang and Zhou (2019) demonstrated that the NNDVI, 

CIgreen , and CIred-edge, out of the 10 tested VIs, were the most sensitive to changes in water conditions 

between water treatments in a study on summer maize. Moreover, similar to our study, in the early 

stages, these VIs started to distinguish between the water and rainfed treatments, while the impacts 

of various water treatments on VIs were strongest during the peak of the growing season. In the case 

of our study, as observed in Figure 12, the difference between the irrigated treatments (I100 and I0) 

was chiefly noticed for the MTCI and CI red-edge indices. Nevertheless, according to Shiratsuchi et 

al. (2011), the DATT and MTCI indices were the least affected by the irrigation levels, while the CI 

and CIred-edge indices were highly influenced, particularly at the V11 and R4 stages. In the present 

study, different water levels did not affect the SIPI (Fig.12), however, some studies showed a strong 

effect of water stress on the reduction in this index  (Vincente et al., 2018; Zhang et al., 2018). 

3.3.4.2. Leaf Chlorophyll and Reflectance 

Many structural indices use only two spectral bands in their formulation, the red and near-infrared 

regions, where light is scattered by leaf mesophyll, whereas chlorophyll indices use wavelengths in 

the red-edge region due to the linkage with chlorophyll content, allowing for the vegetation status to 

be monitored throughout the growing season. The red-edge identifies the steep transition between the 

reflectance absorption characteristic in red wavelengths and high NIR reflectance, with the red-edge 

position being defined as the point of maximum slope (inflection point). During the growth season, 

when there is a relatively large concentration of chlorophyll in the leaves, the red-edge spectrum is 

particularly sensitive to medium and high chlorophyll levels and it is considered as an excellent 

indicator of crop health (Kurbanov and Zakharova, 2020). Similarly, it was recently verified that the 

electromagnetic spectrum’s red-edge area appeared to be the most responsive to the chlorophyll 

concentration (El-Metwalli et al., 2020). This explains the positive correlation seen in our study 

between VIs, which were calculated using red-edge wavelengths (particularly CIred-edge, REIP, DD, 



 73 

 

NDRE, DATT, MTCI), and the leaf–gas exchange parameters. The peak at 705 nm is generally 

evident in leaves with low chlorophyll content, whereas the peak at 725 nm dominated in leaves with 

greater chlorophyll levels, as reported in Lamb et al. (2002); a similar trend was observed in our study 

for the REIP index. 

These indicators aid researchers in a better understanding of the biophysical and biochemical 

processes of crop leaves as well as in crop yield prediction (Alordzinu et al., 2021). Nitrogen deficit 

affects the leaf chlorophyll concentration, as it was widely recognized. In our study, before flowering, 

all treatments had close values of leaf chlorophyll content, but after the full developing stage, a 

separation occurred. As expected, the spectral reflectance values, starting from the NIR wavelengths, 

were greater in treatments of higher N levels. 

In terms of VIs, DATT has already demonstrated the capacity to estimate the chlorophyll 

concentration with reasonable accuracy, as also observed in our work (Fig.14a). Similarly, the DD 

was shown to be indicative of the gas exchange parameters (Fig.14b) and by assessing the leaf 

chlorophyll concentration (Le Maire et al., 2004; Ju et al., 2019).  

However, the MCARI index, which has been considered as one of the most sensitive indices for 

chlorophyll variability, showed a slightly negative correlation with the physiological variables. A 

similar outcome was reported in the study of Zhang et al. (2019), where a negative correlation 

between the MCARI index and leaf chlorophyll content was found. Furthermore, the SIPI and CI 

indices were unable to accurately reflect the crop status, with minimal correlation with other variables. 

A lack of sensitivity of these indices to nutrient variation has been already described by (Blackburn 

et al., 1998; Marino et al., 2014).  

 

3.3.4.3. Leaf Water and Reflectance 

As expected, the water regime had a significant impact on RWC, which decreased gradually at the 

beginning and then rapidly as the drought progressed. The RWC increased following irrigation events 

in both the full and deficit irrigation treatments, with full irrigation showing greater values. 

All of the calculated VIs showed a slightly negative or positive correlation with plant water content 

(expressed as RWC). Even though water loss from plant tissue is a result of drought-altering 

vegetation reflectance, in our study, a slightly negative correlation between water indices and RWC 

was found. However, it is currently being debated whether changes in plant reflectance can capture a 

minor decline in canopy water content during the early occurrence of water stress (Kovar et al., 2019). 

Fernandes et al. (2020) found a negative relationship between the RWC and water indices. 

Furthermore, some studies have demonstrated that variations in leaf reflectance during dryness are 
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difficult to predict, as an increase in (Seelig et al., 2008), a decrease in (Jackson et al.,1985), and non-

significant (Moore et al., 2008) changes were observed. 

The hypothesis behind water indices (WIs) is that NIR wavelengths (970 nm) penetrate deeper into 

the canopy and may thus accurately evaluate the water content (Sims and Gamon, 2003). 

Consequently, water indices have the potential to detect early water stress in the absence of other 

types of stress. Water absorption bands occur in the NIR range, beyond the photosynthetically active 

radiation (PAR); it reduces the overlap with other abiotic stresses (Badzmierowski et al., 2019). In 

contrast to 900 nm, the degree of absorption at 970 nm increased as the water content of the plant 

canopies increased (Penuelas et al., 1996). Therefore, when plants are water-stressed, the 970 nm 

trough of the reflectance spectrum tends to disappear and shift toward lower wavelengths. The 

reflectance at 900 nm is utilized as a reference because it is affected by changes in the canopy structure 

as the measurement at 970 nm (Ihuoma and Madramootoo, 2017), although water has no absorption 

at this wavelength. Nevertheless, some studies (Wang et al., 2013; Katsoulas et al., 2016) have shown 

that some water-sensitive vegetation indices only give information about the water conditions, but 

not on the plant growth status. In the study of Zhang and Zhou (2019) on summer maize, the 

chlorophyll indices had a higher sensitivity to crop growth indicators (such as the canopy water 

content and leaf equivalent water thickness) than any of the water-sensitive indices tested. 

In addition, in our study, the water indices were positively correlated to the vegetation temperature 

(Tc), which specifies the importance of the vegetation temperature for water stress detection. Since 

canopy temperature is an indicator of crop energy balance, a canopy under water stress appears to 

have a greater temperature than a well-watered one under the same environmental conditions. 

Moreover, previous research (Ihuoma and Madramootoo, 2020; Claudio et al., 2006) has 

demonstrated a positive correlation between canopy temperature and water indices (particularly WBI 

and WBI/NDVI). 

 

3.3.5. Conclusions 

The sweet maize response was affected by both the nitrogen and water supply. The effects of water 

stress were particularly evident at the flowering stage, not allowing for grain formation in the rainfed 

treatments. Both the water and nitrogen deficiencies reflected on the irrigation water use efficiency, 

which demonstrated the highest performance under deficit irrigation and nitrogen fertilization. 

The analysis of the whole spectrum and the calculation of the vegetation indices demonstrated the 

importance of the red-edge vegetation indices in assessing the status of sweet maize. Thus, it is shown 

that remotely sensed reflectance indices are promising predictive tools for the impact of drought and 
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nutritional deficiency on the photosynthetic activity and water status. The findings of this study 

confirmed that, among all of the studied indices, NNDVI and WBI/NDVI were the only two indices 

affected by the interaction of water and nitrogen. Moreover, the red-edge indices had a high sensitivity 

to nitrogen levels, in particular, NDRE, CIred-edge , DATT, and MTCI showed a great discrimination 

capability. Therefore, the detection of crop stress may become simpler by the appropriate selection 

of VIs. Since several indices did not show high sensitivity to the studied crop parameters, it is 

important to bear in mind that the link between the canopy-level spectral signal and the target property 

might be influenced by canopy structure factors including the plant size, age, and leaf angle. 

Moreover, it must be considered that under field conditions, water or/and nutrient deficits may be 

accompanied by changes in any other leaf and canopy properties that would affect the reflectance 

characteristics. Thus, in future steps, more complex experiments and comparative studies should be 

conducted to fully understand and differentiate the effects of stresses on the crop parameters. 

Multivariate techniques, such as partial least squares regression, and machine learning methods 

(random forest, multiple adaptive regression splines) may overcome certain limitations in assessing 

the vegetation parameters under different stresses, which should be investigated in future works.  
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3.4. Comparative performance of Proximal Hyperspectral Vegetation 

Indices Vs. Aerial RGB indices for evaluation of sweet-maize behaviour  

 

Abstract: In order to overcome some environmental limitations in crop production, remote sensing 

measures may be utilized to quickly evaluate crop performance and to cost-effectively monitor a large 

number of plots. In this work, we examined how well a set of RGB (red-green-blue) indices and 

hyperspectral vegetation indices described the response of sweet maize (Zea mays var. saccharata L.) 

under different nitrogen and water inputs. During two growing seasons of the sweet maize crop, 

measurements were conducted at two different levels: at the ground for collecting hyperspectral 

information and bio-physiological parameters and from an aerial platform for RGB indices 

acquisition. The greatest power was found for Green-Area index (GA) predicting Leaf Area Index 

(LAI) in 2020 (R2=0.61) and Leaf Chlorophyll Concentration (CC) in 2021 (R2=0.49).  Moreover, 

the capacity of predicting gas-exchange parameters by red-edge positions was demonstrated. Several 

red-edge indices, including Clred-edge, NDRE, MTCI, DD, and REIP, were shown to be the best 

predictors of the bio-physiological parameters.  

The usefulness of RGB-derived indices, which are less expensive and less time-consuming compared 

to hyperspectral indices, is showed by this study. 

 

Keywords: RGB indices, Hyperspectral indices, drones in agriculture, bio-physiological crop 

parameters 

 

3.4.1.  Introduction  

Precision agriculture, water stress and nutrient deficiency management have benefited from remote 

sensing approaches at the canopy level (Liaghat and Balasundram, 2010; Virnodkar et al., 2020). As 

a result, those spectral techniques have been presented as possible options for detecting crop N status 

and water stress across wide regions (Katsoulas et al., 2016). These techniques can assist farmers in 

practising more sustainable agriculture, by providing (where feasible) the resources (such as water 

and fertilizer) required to ensure a higher yield (Shoshany et al., 2013).   

However, as the new technology adoption sometimes requires a big upfront investment, it is confined 

to large-scale production and/or farmers with significant financial resources (Mulla, 2013; 

Wachendorf et al., 2018). 
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The use of both traditional laboratory procedures and remote sensing techniques to monitor crop 

development has certain drawbacks, including high costs and variability of weather conditions. 

Sometimes, even though some satellite images (such as Sentinel-2) are frequently available for free 

download, the low resolution (not higher than 100 square meters per pixel), intervals of data 

acquisition, weather factors (such as clouds), and the need for computer technical support and 

qualified people make this type of remote sensing inefficient for small-scale farmers (Khannal et al., 

2020). An alternative option may be optical sensors, such as portable spectroradiometers. However, 

this approach has a limitation on portability and the time required to take measurements in different 

field locations (Haghighattalab et al., 2016).  

Hence, using low-cost imaging approaches such as RGB (red-green-blue) imaging with a digital 

camera might help to improve agriculture monitoring in arid and semi-arid Mediterranean regions 

where irrigation and fertilization are sometimes not regulated in terms of time and volume (Danzi et 

al., 2019). 

Moreover, the use of RGB above canopy provides accurate results, since image capturing and data 

processing have become ever more commercially successful for different practical concerns in 

agriculture and biology as a result of recent advancements in remote sensing technology (Tsouros et 

al., 2019). RGB images are an important discovery because of the colour variation dependence of 

different biological samples, as well as the ease with which they may be processed. Generally, the 

RGB imaging method has been developed for rapid and non-invasive determination of colour changes 

caused by nutritional stress such as chlorophyll content in the leaves (Yadav et al., 2010). 

Furthermore, using information collected from digital RGB photos for calculating vegetation indices 

provides a low-cost alternative to using multispectral and hyperspectral bands (Yousfi et al., 2019). 

Since RGB imaging approach detects leaf colour changes, it may be used to monitor the progress of 

a plant's development and health, water and nutritional level, plant disease, senescence, etc. 

Therefore, RGB VIs have previously been used for precision crop management at both the canopy 

and leaf levels aiming at improving crop performance under a variety of treatments (Norasma et al., 

2018; Fernandez-Gallego et al., 2019; Buchaillot et al., 2019; Zhang et al., 2019; Wakabayashi et al., 

2021). Rorie et al. (2011) have reported that digital-image analysis is a simple method providing a 

determination of maize nitrogen status with the potential as a diagnostic tool for crop nitrogen needs 

evaluation. Besides that, measuring nitrogen status above crop tissue is cheaper and less time-

consuming than soil tests (Li et al., 2011).  

Assessment of RGB and multispectral indices for maize under phosphorus fertilization and 

comparison between ground and UAV (Unmanned Aerial Vehicle) measurements done by Gracia-

Romero et al. (2017) showed that ground-measured RGB indices such as hue, a*, u*, GA and GGA 
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indices were significantly affected by the absence of fertilizer and they had better performance in 

predicting grain yield than multispectral indices. Recently, it was found that the same RGB indices 

(a*, u*, GA and GGA) were associated with leaf wilting, with higher accuracy from proximally taken 

images (Sarkar et al., 2021). In a study on wheat under different irrigation regimes, vegetation indices, 

obtained from RGB conventional camera, showed similar or slightly better performance in yield 

predicting than NDVI (Casadesus et al., 2007). According to Kefauver et al. (2015), RGB indices at 

both the canopy and at the leaf levels may successfully be employed for precise crop management in 

wheat and maize for fertilizers and irrigation treatments, monitoring disease and as effective high-

throughput phenotyping techniques in breeding programs.  

RGB images can be processed by analysing red, green, and blue light broadband reflectance values 

or by employing different colour spaces, as the Breedpix code suite does (Gracia-Romero et al., 

2017).  

In our study, RGB VIs described above are assessed for their potential to monitor sweet maize growth 

under different water and nitrogen treatments. The performance of RGB VIs was evaluated and 

compared to the performance of hyperspectral VIs collected by a spectroradiometer.  

3.4.2. Materials and Methods 

3.4.2.1. Study area and experimental design 

Field trials were done at the experimental field of the Mediterranean Agronomic Institute (IAMB) 

(Fig.15) in Valenzano, Bari (41°03'N, 16°53'E, 77 m above sea level), Southern Italy, during two 

growing seasons in 2020 and 2021. The area experiences typical Mediterranean weather, with mild 

winters and dry summers. The soil in the study region is silty-clay-loam. 

From June to September 2020 and 2021, sweet maize (Zea mays var. saccharata L.) was cultivated 

on 18 plots (each measuring 10 × 10 m). Sweet maize was grown under three irrigation regimes, 

including full irrigation (I100), deficit irrigation (I50) and rainfed (I0), and two Nitrogen treatments, 

which are High Nitrogen Level treatment (HN - 300 kg ha-1) and Low Nitrogen Level (LN - 50 kg 

ha-1). In HN level plots, in additionally to fertilization before sowing, 250 kg ha-1 as urea was applied.  

A split-plot experimental design with three replicates was used to distribute the treatments, with 

irrigation regime (WR) serving as the main plot component and N level (N) serving as the sub-plot 

factor. 

A regular set of daily meteorological measurements (air temperature, relative humidity, solar 

radiation, wind speed, and precipitation) were collected from the weather station nearby to the 

experimental field. 
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For crops under irrigated treatments water was supplied by drip method system. Moreover, an Excel-

Based model that calculates crop evapotranspiration and irrigation water needs on a day-by-day basis 

using the Allen et al. standard approach was used to manage crop water balance and irrigation 

schedule (1998). 

 

Figure 15. Field experimental design 

3.4.2.2. Data collection  

3.4.2.2.1. RGB image acquisition and analysis  

RGB images were collected using the digital camera (20 MP) installed on a drone (Mavik-2 DJI). 

Each image was taken from the (Fig.16) of the plots, holding aircraft 80-100 cm above the canopy in 

the zenithal plane. Image acquisition has been done on sunny days, during both growing seasons, 

from development stage until harvesting.  

Thereafter, the Breedpix 0.2 program, which was modified for JAVA 8 and included as a plugin in 

FIJI (https://github.com/George-haddad/CIMMYT), was then used to analyse RGB images. This 

program makes it possible to extract RGB vegetation indices (VIs) in connection to various colour 

characteristics (Casades et al., 2007) and is a free program that can quickly analyse hundreds of 

images at once and output a number of indices. Utilizing BreedPix functions, RGB values were 

changed to hue-saturation-intensity (HSI) values, which are based on how people see colour, to make 

interpretation simpler. Chromatic coordinates from the CIELab and CIELuv color spaces were 

simultaneously determined as in Trussell et al., (2011). 

Hence, the indices (Tab.9) are calculated using either the average colour of the entire image in various 

units related to "greenness" or the proportion of pixels classified as green canopy relative to the total 

number of pixels in the image. The Hue (H) component of the HSI colour space describes the colour 

spanning the visible spectrum in the form of an angle between 0O and 360O, where 0O corresponds to 

red, 60O to yellow, 120O to green, and 180O to cyan. 

Green Area Index (GA) is the percentage of pixels with 60 < Hue < 120 from the total amount of 

pixels, whereas the greener area (GGA) is a little more limiting since the index corresponds to 80 < 
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Hue < 120, excluding yellowish-green tones. Moreover, GGA is proposed to capture the active 

photosynthetic area excluding senescent leaves. 

In the CIELab colour space model, the L* dimension denotes lightness, while the a* component 

represents the green to red range, with a greater positive value signifying a purer red and a lower 

positive value indicating a greener hue. Meanwhile, the b* component expresses the transition from 

blue to yellow, with the more positive value being closer to pure yellow and the more negative value 

being closer to blue. In the CIELuv colour space model, dimensions u* and v* are perceptually 

uniform coordinates, where L* is again lightness and u* and v* represent axes similar to a* and b* 

in separating the colour spectrum, respectively. 

Furthermore, both CIELab and CIELuv include colour calibration corrections by separating the 

colour hue from the illumination elements of the input RGB signal. For that reason, as it was proposed 

by Buchaillot et al. (2019), we used two new vegetation indices based on these colour spaces, using 

the normalized difference between a* and b* (NDLab) and the normalized difference between u* and 

v* (NDLuv) in a manner similar to the conceptual basis for NDVI. 

As a result, the CIElab and CIEluv colour spaces may contrast green vegetation abundance with both 

the reddish/brown soil background (fractional vegetation cover or plant growth) and yellowing 

induced by chlorosis (loss of foliar chlorophyll), both of which are typical indications of nitrogen 

deficit.  

   

   

Figure 16. RGB images taken during the flowering season in 6 different treatments (I100 HN, I100 

LN, I50 HN, I50 LN, I0 HN, I0 LN)  
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Table 9. Indices derived from RGB digital camera  

3.4.2.2.2. Spectral reflectance and bio-physiological parameters  

ASD FieldSpec Hand-Held 2 Spectro-radiometer with high spectral resolution was used to assess 

plant reflectance (Analytical Spectral Devices, Inc., Boulder, CO, USA). The device measures 

reflectance with a wavelength range of 325–1075 nm, a resolution of 3 nm at 700 nm, and a precision 

of 1 nm. Thereafter, vegetation indices (Tab.6) were calculated using different spectral bands.  

Moreover, during the growing season different bio-physiological crop parameters were measured. In 

order to measure the net photosynthetic CO2 assimilation rate (An, µmol m-2 s-1), stomatal 

conductance (gs, mol m-2 s-1), and leaf transpiration (Tr, mmol m-2 s-1), a portable open-system gas-

exchange analyser (Li-6400XT, Li-Cor Biosciences, Lincoln, NE, USA) was used. On 25 repetitions 

per plot, the Chlorophyll Content (CC) of leaves was indirectly quantified using an optical meter 

(SPAD-502, Konica Minolta, Osaka, Japan). Also, relative water content (RWC) was calculated as a 

ratio of the difference between fresh weight (FW) of leaf segments and their dry weight (DW) and 

the difference between fresh weight and saturated weight (SW).  Furthermore, a thermal imaging 

camera (FLIR B335, Wilsonville, OR, USA) was used to measure the canopy temperature (Tc) and 

then, for leaf temperature extraction, FLIR Tools software was used to enhance the images. Finally, 

the leaf area index (LAI) was assessed using an optical leaf area meter (Li-COR, 3100, Lincoln NE, 

USA) and then dry-above ground biomass was measured on the same samples used for LAI, 

weighting them after drying in the oven at 70◦C for 48 h.  

3.4.2.3. Statistical analysis 

Using the free and open-source software RStudio, data was statistically analyzed (R Foundation for 

Statistical Computing, Vienna, Austria). A two-factor analysis of variance was used to investigate the 

RGB vegetation indices  

Model Index  

HSI model Hue (H) 0° - red 

60° - yellow 

120° - green 

180° - cyan 

pixels Green Area (GA) 60° - 180° ® yellow-bluish green 

pixels Greener Area (GGA) 80° - 180° ® exclude yellowish tones 

CIELab a* green – red 

b* blue - yellow 
CIELuv u* blue – green (v*) – red (u*) 

v* 

CIELab NDLab (((1 − a*) − b*)/ ((1 − a*) + b*) + 1). 
 

CIELuv NDLuv (((1 − u*) − v*)/ ((1 − u*) + v*) + 1) 
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impact of growing conditions (water and nitrogen regime) and their interaction on various bio-

physiological parameters. Fisher's LSD (Least Significant Difference) test was used to identify post 

hoc differences at each growing condition. Moreover, bivariate Pearson correlation coefficients were 

computed to examine the correlation between the bio-physiological parameters and tested RGB 

indices.  Multiple linear regression was calculated using a stepwise algorithm with bio-physiological 

parameters as dependent variables and RGB and hyperspectral vegetation indices as independent 

variables.  

3.4.3. Results  

The results of the analysis of variance for Leaf Area Index (LAI), Chlorophyll content (CC) and net 

assimilation rate (An) for two growing seasons (2020 and 2021) are reported in Table 10. The water 

treatments significantly affected all three presented variables, while nitrogen regimes were significant 

only in the case of CC in both years and An in 2020. However, the interaction between water and 

nitrogen was only significant for CC in 2021, where also the biggest differences between each 

treatment were found, except for two rainfed treatments that showed similar performance. Other 

parameters displayed the difference mainly between water treatments. Moreover, the importance of 

nitrogen for CC was shown also by values that were the highest in treatments with high nitrogen level 

(I100 HN, I50 HN, I0 HN).   

 

Table 10. Effects of irrigation regime and nitrogen levels on Leaf Area Index (LAI), Chlorophyll 

content (CC) and net assimilation rate (An)  

Treatment 
 

LAI (m2 m-2) CC (r.u.) An (�mol m-2 s-1) 
  

2020 2021 2020 2021 2020 2021 

Water 

regime  

Nitrogen 
      

I0 Low 1.08±0.34c 0.24±0.03c 33.34±5.71c 17.65±1.30e 1.54±2.58c 1.17±0.25c 

High 0.92±0.13c 0.34±0.05c 39.96±7.08bc 19.91±1.59e 1.06±0.94c 1.47±0.56c 

I50 Low 2.10±0.19b 1.53±0.45b 38.26±2.96c 24.58±1.91d 33.25±3.21b 19.67±1.42b 

High 2.56±0.12ab 1.62±0.42b 46.62±3.03b 34.16±2.36b 34.76±1.93b 21.25±1.09b 

I100 Low 2.54±0.24ab 2.53±0.31a 38.32±4.41c 29.89±1.54c 39.67±2.31a 29.96±2.59a 

High 3.12±0.27a 2.78±0.12a 53.83±2.95a 44.72±1.68a 41.48±0.99a 33.81±3.45a 

Significance 
       

Water regime *** ***             *       *** *** *** 

Nitrogen 
 

ns ns *** *** *  ns 

WR x N 
 

ns ns ns *** ns ns 
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Table 11 shows stepwise regression models explaining different physiological variables variations 

from RGB and narrow-band VIs across different water supplies and nitrogen levels in the 2020 and 

2021 growing seasons. All presented models were found to be significant. The best-performing model 

was obtained in 2020 when 63.7% of LAI was explained, considering indices such as GA, NDLuv 

and v*. The same indices, together with index b*, explained 61.8 % of CC in 2020. Moreover, in 

2020, the GA index was considered as one of the best indices for explaining response variables, since 

it explained 61.6% of LAI, 46.1% of stomatal conductance, 56.3% of transpiration rate and 35.7% of 

RWC. In the growing season of 2021, GA has been included only in the model chosen for CC, where 

this index provided the most accurate estimation (R2=0.49).In 2021, the GGA index was included in 

more models, but not with high prediction ability. The best model of 2021 was found for CC that 

includes GA, GGA and NDLab indices.  

Table 11. Multilinear stepwise regression of different bio-physiological parameters and RGB 

indices 

Year Response 
VIs Coefficient  p value 

Portion Year Response 
VIs Coefficient p value 

Portion 

2020 Variable of variance 2021 Variable of variance 
 

LAI 

(R2=0.637, 
Radj

2=0.633) 

Constant -1.20 <0.001   
LAI 

(R2=0.491, 
Radj

2=0.485) 

Constant -1.517 <0.001  
 

GA 6.84 <0.001 0.616 
 

v* 0.059 <0.001 0.393 
 

NDLuv -1.38 <0.001 0.009 
 

GGA 1.547 <0.001 0.098 
 

v* -0.02 0.003 0.012           
 

DAGB 

(R2=0.498, 

Radj
2=0.490) 

Constant -995.25 <0.001     

DAGB 

(R2=0.236, 

Radj
2=0.226) 

Constant -121.884 <0.001   
 

GA 4734.94 <0.001 0.146 
 

b* 10.132 <0.001 0.185 
 

u* 46.53 <0.001 0.203 
 

GGA 489.834 <0.001 0.025 
 

b* -25.50 <0.001 0.091 
 

NDLuv -335.562 0.008 0.026 
 NDLuv -1275.89 <0.001 0.058           
 

CC 

(R2=0.618, 
Radj

2=0.612) 

Constant 19.83 <0.001     

CC 

(R2=0.508, 
Radj

2=0.501) 

Constant 24.764 <0.001   
 

NDLuv 58.03 <0.001 0.502 
 

GA 32.738 <0.001 0.49 
 

u* 1.62 <0.001 0.081 
 

GGA 8.682 <0.001 0.008 
 

GA 35.38 <0.001 0.026 
 

NDLab -21.978 0.05 0.01 
 

b* -0.19 0.016 0.009           
 

An 

(R2=0.535, 
Radj

2=0.531) 

Constant -19.75 <0.001     An 

(R2=0.496, 
Radj

2=0.491) 

Constant -30.163 <0.001   
 

v* 0.79 <0.001 0.374 
 

v* 0.81 <0.001 0.45 
 

GGA 29.68 <0.001 0.161   NDLab 23.802 <0.001 0.046 
 

gs 

(R2=0.474, 

Radj
2=0.470) 

Constant -0.12 <0.001     gs 

(R2=0.354, 

Radj
2=0.347) 

Constant -0.225 <0.001   
 

GA 0.63 <0.001 0.461 
 

v* 0.005 <0.001 0.3 
 

a* 0.01 0.013 0.013   NDLab 0.217 <0.001 0.054 
 

Tr 

(R2=0.604, 

Radj
2=0.600) 

Constant -3.77 <0.001     
Tr 

(R2=0.447, 

Radj
2=0.41) 

Constant -4.362 <0.001   
 

GA 13.97 <0.001 0.563 
 

v* 0.148 <0.001 0.421 
 

a* 0.19 <0.001 0.014 
 

GGA 4.205 0.003 0.026 
 

v* 0.07 <0.001 0.024           
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RWC 

(R2=0.560, 

Radj
2=0.555) 

Constant 23.45 <0.001     

RWC 

(R2=0.267, 

Radj
2=0.256) 

Constant -51.968 <0.001   
 

GA 70.49 <0.001 0.357 
 

u* 6.215 <0.001 0.087 
 

u* 3.18 <0.001 0.054 
 

v* 2.539 <0.001 0.107 
 

NDLuv 86.87 <0.001 0.149   GGA 125.257 <0.001 0.073 
 

Tc 
(R2=0.575, 

Radj
2=0.570) 

Constant 13.43 <0.001     
Tc 
(R2=0.412, 

Radj
2=0.406) 

Constant 38.965 <0.001   
 

NDLuv 49.77 <0.001 0.232  v* -0.167 <0.001 0.384 
 

u* 1.44 <0.001 0.255  u* 0.082 0.003 0.028 
 

v* 0.30 <0.001 0.088           
 
 
For the purpose of testing how the combinations of narrow-band indices may improve the strength and 

accuracy of the assessment of different physiological variables, stepwise regression was performed 

(Tab.12). The best explanatory variables to predict LAI were DD and WINDVI in 2020 season, while 

in 2021 REIP and WI. However, the determination coefficients (R2) of the regression model were low 

in both growing seasons, as also observed for DAGB prediction.  

In 2020, the Clred-edge index explained 55.2% of CC, while WINDVI and DD 15.4 and 3.5 %, 

respectively. However, in 2021, the ability of DD index to predict CC was noticeably higher (R2=0.446).  

In 2020, 45.7% of total variation of An was explained by Clgreen, DD and WINDVI , while in 2021 the 

model included NDRE, WINDVI and WI, explaining 50.1%.  

The same indices (NDRE and Cl) were selected in models to predict gs and Tr in 2020, while in 2021, 

gs and Tr were mainly explained by MTCI (R2=0.396) and NDRE (R2=0.477), respectively. The 

variation of RWC in each growing season was  very well explained by WI, with significant variation of 

coefficient of determination (R2), with values of 70.5% in 2020, while 13% in 2021 .  

The best model, with two (WI and Clred-edge) and three (DD, WI and WINDVI) indices, was selected to 

predict Tc in 2020 and 2021, respectively. Moreover, in 2020, WI explained 76.5% of Tc, which was 

the best performance compared to other indices included in all models.  
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Table 12. Multilinear stepwise regression of different bio-physiological parameters as the dependent 

variable and hyperspectral indices 

Year Response 

VIs Coefficient  p value 

Portion  Year Response  

VIs Coefficient  p value 

Portion  

2020 Variable 
of 

variance 
2021 Variable 

of 

variance 
 

LAI 
(R2=0.408, 

Radj
2=0.404) 

Constant 0.08 0.719   LAI 
(R2=0.387, 

Radj
2=0.381) 

Constant -70.631 <0.001  
 

DD 9.38 <0.001 0.343 
 

REIP 0.09 <0.001 0.366 
 

WINDVI 0.82 <0.001 0.065 
 

WI 7.746 0.011 0.021 
 

DAGB 

(R2=0.244, 

Radj
2=0.238) 

Constant 207.19 0.002  
 

DAGB 

(R2=0.368, 

Radj
2=0.359) 

Constant -8601.66 0.001  
 

Clred-edge 3287.90 <0.001 0.105 
 

Clred-edge 314.34 0.219 0.313 
 

Cl -168.11 <0.001 0.139 
 

WI 2623.148 0.001 0.037 
 

    
 

REIP 8.57 0.017 0.018 
 

CC 

(R2=0.741, 

Radj
2=0.738) 

Constant 1.50 0.328  
 

CC 

(R2=0.493, 

Radj
2=0.485) 

Constant 385.933 0.01  
 

Clred-edge 38.50 <0.001 0.552 
 

DD 104.517 <0.001 0.446 
 

WINDVI 17.14 <0.001 0.154 
 

Clgreen -3.664 0.003 0.03 
 

DD 54.21 <0.001 0.035 
 

REIP -0.541 0.012 0.017 
 

An 

(R2=0.457, 

Radj
2=0.451) 

Constant 2.23 0.399  
 

An 

(R2=0.501, 

Radj
2=0.494) 

Constant -60.825 0.129  
 

Clgreen 6.17 <0.001 0.353 
 

NDRE 81.859 <0.001 0.477 
 

DD 76.57 <0.001 0.094 
 

WINDVI -8.964 0.005 0.016 
 

WINDVI 4.22 0.024 0.01 
 

WI 74.419 0.068 0.008 
 

gs 

(R2=0.349, 

Radj
2=0.346) 

Constant -0.02 0.289  
 

gs 

(R2=0.436, 

Radj
2=0.428) 

Constant -0.798 0.023  
 

NDRE 1.32 <0.001 0.334 
 

MTCI 0.16 <0.001 0.396 
 

Cl -0.02 0.012 0.015 
 

WINDVI -0.064 0.009 0.02 
 

    
 

WI 0.89 0.009 0.02 
 

Tr 
(R2=0.435, 

Radj
2=0.431) 

Constant 0.34 0.376  
 

Tr 
(R2=0.495, 

Radj
2=0.485) 

Constant -26.077 0.011  
 

NDRE 32.53 <0.001 0.41 
 

NDRE 27.54 <0.001 0.421 
 

Cl -0.55 0.001 0.025 
 

WINDVI -3.858 <0.001 0.015 
 

    
 

Clgreen -2.489 <0.001 0.031 
 

    
 

WI 34.815 0.01 0.028 
 

RWC 

(R2=0.755, 
Radj

2=0.752) 

Constant 0.70 0.779  
 

RWC 

(R2=0.194, 
Radj

2=0.182) 

Constant -637.804 <0.001  
 

WI 69.10 <0.001 0.705 
 

WI 688.902 <0.001 0.13 
 

DD 57.39 <0.001 0.05 
 

DD -154.241 <0.001 0.048 
 

     Cl 5.906 0.051 0.016 
 

Tc 

(R2=0.823, 
Radj

2=0.821) 

Constant 2.76 <0.001   
Tc 

(R2=0.422, 
Radj

2
=0.413) 

Constant 66.171 <0.001  
 

WINDVI 16.74 <0.001 0.765  DD -6.392 0.025 0.337 
 

Clred-edge 16.63 <0.001 0.058  WI 3.079 <0.001 0.043 
 

     WINDVI -35.621 <0.001 0.042 

 

Correlations among the RGB indices and both bio-physiological parameters were checked using a 

Pearson correlation matrix (Fig.17). In 2020, the GA index and LAI had the highest positive 

correlation (0.79). The GA index was favourably connected with all parameters in the season of 2021, 

with CC having the strongest correlation (0.74). Other indices performed similarly, particularly GGA, 
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NDLab, and NDLuv, but indices b* and v* had lower values of correlation with the examined 

parameters. In contrast, all parameters in both seasons had a highly or moderately negative correlation 

with indices a* and u*.  

However, very poor correlation values were found for DAGB, particularly throughout the 2020 

season. Similar to that, with the exception of the b* and v* indices, the correlation between RWC and 

indices in 2021 had values that were extremely low, close to zero.  

 

  

 

Figure 17. Correlation matrix for the bio-physiological parameters and RGB indices for sweet maize 

in 2020 (left) and 2021 (right) 

3.4.4. Discussion  

3.4.4.1. Effect of water and nitrogen treatments on Leaf Area Index, leaf chlorophyll 

content and net assimilation rate  

Water scarcity, together with N deficiency, is a significant limiting factor of the main physiological 

processes, such as photosynthesis, respiration, nitrogen accumulation, etc (Santos et al., 2022). Those 

two factors have a marked effect on LAI (Liaghat and Balasundram, 2018), leaf chlorophyll content 

(Wang et al., 2021), net assimilation rate (Li et al., 2016) and therefore, they are strongly linked with 

crop production.   

In our study, the maximum LAI, with values of 3.12 and 2.78 in 2020 and 2021, respectively, was 

obtained in full irrigated and high nitrogen level conditions. However, water stress that occurred in 

rainfed plots led to much lower values of LAI, especially in the 2021 season. Numerous studies have 

linked leaf area index to water stress in maize (Cakir, 2004; Farre and Faci, 2009). Moreover, in our 
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study, water stress had a significant effect on LAI in both growing years, while N and interaction of 

water and N were not significant for this parameter.  

As Table 10 showed, the values of leaf chlorophyll content ranged between 33.3 and 53.8 (r.u) in 

2020, while in 2021 between 17.7 and 44.7 (r.u). Nitrogen significantly affected CC in both years, 

while in 2021 also significant interaction of water and nitrogen was observed. Many studies 

determined that the leaf chlorophyll content increases with the increment of doses of nitrogen 

fertilizers (Prsa et al., 2007; Uysal, 2018).  

Furthermore, some studies explained that the decrease in chlorophyll concentration in nitrogen-

limited conditions is frequently a factor contributing to lower rates of photosynthesis. 

N deficit causes maize to lower photosynthetic activity, which has a significant impact on grain 

productivity (Bertheloot et al., 2008). Compared to full irrigated treatments, in deficit irrigation 

treatments, An decreased by 16% and 37% in 2020 and 2021, respectively.  It is worth noticing that 

the reduction of the net assimilation rate in rainfed conditions, usually occurring in severe water stress 

conditions, results in closing stomata and impairing the photosynthetic activity. Hence, this parameter 

has great significance in determining the lowest limit of water demand in plant physiology and 

represents a key indicator of the shift from mild to severe drought conditions (Bacelar et al., 2009).  

3.4.4.2. Performance of RGB and hyperspectral vegetation indices 

The fundamental advantage of integrating imaging approaches into aerial-based platforms is that 

researchers may quickly cover larger experimental regions, limiting the impact of diurnal fluctuation 

in environmental factors such variations in radiation and temperature or the presence of clouds (Costa 

et al., 2013).  

It has been suggested that the vegetation indices acquired by digital RGB images may be useful to 

estimate the green biomass, yield production and other physiological parameters of maize and other 

crops under stress (Ahmed and Reid, 1996). As all measurements in both seasons were done at the 

same time on the same day, fluctuations in environmental factors could be almost negligible. 

Compared with other RGB-based indices, the GA index presented the greatest ability to predict 

examined parameters (Tab.11). It was surprising to notice that the GGA index was not capable to 

perform in the same way as GA, knowing that both indices compare the percentage of green pixels 

to all the pixels in the picture (Lukina et al., 1999) and previous studies reported very similar 

behaviors of these two indices (Gracia-Romero et al., 2019; Buchaillot et al., 2019).  

In our study, a* index was not included in predicted models, even though a* index was found to be 

strongly linked to green biomass and the detection of crop stress (Sarkar et al., 2021). However, the 

explaining ability of the NDLuv index in the 2020 season was the best in the case of predicting the 
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CC, where 50% of this parameter was explained. A study of Buchaillot et al. (2019) demonstrated 

the similar contribution of NDLuv, together with NDLab, to predict the grain yield of maize, which 

overperformed NDVI and some other multispectral indices.  

It was observed a high positive correlation of GA and LAI, as well as gas-exchange parameters, 

followed by similar values of other indices such as GGA, NDLab, NDLuv and the same parameters. 

However, the correlation of those indices with DAGB in 2020 and RWC and Tc in 2021 was not 

significant.  

Multilinear stepwise regression of bio-physiological variables and hyperspectral indices resulted in 

the best model of canopy temperature explained by the ratio of WI/NDVI and Clred-edge. A canopy 

under water stress seems to have a higher temperature than one that is well-watered under the same 

climatic conditions because canopy temperature is a measure of the energy balance (Ihuoma and 

Madramootoo, 2020). This may explain the great capability of water indices (WI and WI/NDVI) to 

explain variables such as Tc and RWC.  

Furthermore, the high capacity of red-edge position to predict the gas-exchange parameters was 

proved again. Different red-edge indices such as Clred-edge, NDRE, MTCI, DD, REIP were obtained 

as best predictors of examined bio-physiological parameters. As it was previously explained, the red-

edge position is defined as the point of greatest slope (inflexion point), and it indicates the sharp 

transition between the reflectance absorption characteristic in red wavelengths and NIR reflectance. 

Recent findings reported that the red-edge region of the electromagnetic spectrum showed a very high 

sensitivity to the chlorophyll content variation (El-Metwalli and Tyler, 2020). This explains the 

favorable association between the leaf-gas exchange parameters and the VIs based on red-edge 

wavelengths.  

 

3.4.5. Conclusion  

The use of RGB vegetation indicators to predict the performance of a set of sweet maize parameters 

during the two growing seasons is highlighted in this study. In terms of assessing crop bio-

physiological parameters, the RGB and hyperspectral indices had similar results. Overall, the GA 

index demonstrated the greatest correlation and capability to explain examined parameters. On the 

other hand, hyperspectral vegetation indices indicated the potential of red-edge wavelengths for the 

assessment of important crop parameters. Hence, due to the similarities between the outcomes of the 

proximal evaluation and those attained from aerial platforms, the use of vegetation indices produced 

from RGB photographs may constitute a particularly cost-effective strategy for crop stress 

monitoring. Digital photography is a viable method, despite being relatively low-tech and 
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inexpensive, and its derived indices have shown potential for the assessment of crop management in 

maize, making it appropriate for developing countries in particular. 
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Chapter 4 

Conclusion  

 

Remote and proximal sensing (RS) technologies give the agricultural community a diagnostic tool 

that can act as an early warning system, enabling early intervention to prevent possible issues before 

they adversely affect crop production. Due to recent developments in sensor technologies, data 

management and analysis, the agricultural community now has accessed to several RS choices. 

This study focused on the evaluation of proximal and aerial sensing techniques for accurate soil and 

crop management and sustainable use of nitrogen and water. Specifically, the performance of those 

techniques was assessed for evaluating the sweet maize growth under different water (I100, I50, I0) and 

nitrogen regimes (HN and LN). Ground-based, aerial, and bio-physiological measurements were 

made throughout the growing seasons. 

The crop's physiological characteristics were evaluated using hyperspectral reflectance data. The 

outcomes of our study underlined the key role of the red-edge spectral region by demonstrating that 

red-edge group indices including CARI (Chlorophyll Absorption Reflectance Index), DD (Double 

Difference Index), REIP (Red- Edge Inflection Point), and Clred-edge (Chlorophyll Red-Edge) were 

reliable predictors of yield and physiological parameters. At the mid-season stage, DD, REIP, and 

Clred-edge VIs were able to distinguish crop stress, as well as differentiate water and N stress levels. 

We assessed how responsive hyperspectral indices were to various nitrogen and water treatments. 

The DATT index, which is based on near-infrared and red-edge wavelengths, performed better than 

other indices in explaining variation in chlorophyll content. In contrast, the double difference index 

(DD) exhibited the strongest relation with the leaf-gas exchange. The modified normalized difference 

vegetation index (NNDVI) and the ratio of the water band index to the normalized difference 

vegetation index (WBI/NDVI) were the best indicators to identify the interaction of irrigation and 

nitrogen. Additionally, red-edge-based indicators were more responsive to nitrogen status than the 

structural and water band indices. 

This study highlighted the importance of selecting the suitable narrow-band vegetation indicators to 

monitor the plant's eco-physiological response to water and nitrogen availability. 

Our study has demonstrated the success of using RGB indices to monitor the growth of sweet maize. 

It was obtained high accuracy in predicting Leaf Area Index (LAI) (R2=0.61) in 2020 and Leaf 

Chlorophyll Content (CC) (R2=0.49) in 2021 by the Green-Area index (GA). Thus, these vegetation 

indices may serve as a very affordable and low-cost alternative tool for monitoring water and 
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nutritional status. Consequently, one of the top concerns in current agriculture should be further study 

and practical application of RGB indices in crop growth monitoring, whether used from the ground 

or drones and other unmanned aerial vehicles (UAVs). Undoubtedly, it will demand the development 

of uniform monitoring processes and data elaboration methods that will make it easier to calibrate the 

methods and enable data comparison across various crops and regions. Additional agricultural 

personnel and professional training are required for this purpose.  

Based on the conclusions and data gathered in this work, it can be confirmed the effectiveness of the 

adopted indices and procedures in advancing knowledge of the soil-plant continuum and facilitating 

real-time crop water and nutrient status monitoring.  

However, it is always very important to take into account that, depending on the field conditions, 

changes in any other leaf and canopy features can have an impact on the reflectance characteristics 

occurring in conjunction with water or nutrient deficits. Hence, the employment of machine learning 

and deep learning algorithms, which are being used frequently to build up complex prediction models 

for estimating crop characteristics using spectral data, may represent a challenging strategy to 

overcome existing limitations. 


