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ABSTRACT 

This study presents a novel approach to mitigating heat stress in dairy cows through 

the development and application of a data-driven linear model, designed to optimize 

the use of shower cooling systems. Recognizing heat stress as a significant detriment 

to dairy cow welfare and milk production efficiency, our research leverages extensive 

behavioral and environmental data to construct a predictive model that accounts for 

variables such as Temperature-Humidity Index (THI), rumination, ingestion, and 
panting behaviors, milk production and feed consumption data. 

Utilizing a comprehensive dataset collected from a dairy operation, we employed 

linear regression analysis to elucidate the intricate relationships between these 

variables and their collective impact on panting behavior, an immediate indicator of 

heat stress. The predictive prowess of our model enabled the formulation of a 

personalized shower plan, which, when tested, demonstrated a significant reduction in 

panting scores from a mean of 17.44 to 8.00, achieving a reduction in heat stress 

manifestation by approximately 90.42%. 

Despite facing challenges such as the requirement for high-performance computing to 

process large datasets and the critical evaluation of multivariable interactions and 

data quality, our findings highlight the potential of integrating predictive algorithms 

into current dairy farm management software and sensor technologies. Moreover, the 

study underscores the need for further exploration into more sophisticated modeling 

techniques, such as neural networks and random forests, to enhance the predictive 

accuracy and applicability of heat stress mitigation strategies. 

In conclusion, our research contributes to the growing body of knowledge on precision 

livestock farming by showing the viability of data-driven interventions in addressing 

heat stress. The successful implementation of our model not only promises to improve 

animal welfare and operational efficiency but also serves as a testament to the 

potential of technology and data analytics in fostering sustainable dairy farming 

practices in the face of climatic challenges. 

 

Keywords:     Heat stress, Dairy cows, Predictive model, Shower cooling systems, 

Temperature-Humidity Index (THI), Animal behavior, Data-driven interventions, 

Precision livestock farming, Milk production efficiency, Sustainable dairy farming 

practices 
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CHAPTER 1: LIVESTOCK MANAGEMENT AND 

TECHNOLOGICAL ADVANCEMENTS 

Livestock management stands as a pivotal cornerstone within the realm of global 

agriculture, underpinning the very essence of food security, economic stability, and 

the livelihoods for billions of people. In a world where the balance between human 

nutritional needs and sustainable environmental practices is increasingly delicate, 

the role of sophisticated livestock management cannot be overstated (P.K.Thornton, 

2010). 

This field, rich in tradition yet dynamic in its evolution, encapsulates the collective 

efforts to nurture, protect, and optimize the health and productivity of animals that 

are crucial to our food systems. As we stand at the precipice of a future marked by 

burgeoning populations (United Nations, 2022) and shifting dietary preferences 

(Vermeulen et al. 2020), the strategic importance of livestock management in 

bolstering food security is more pronounced than ever. 

 

Globally, livestock serves not just as a source of essential nutrition through the 

provision of meat, milk, and eggs, but also plays a vital role in the socio-economic 

fabric of rural communities. It offers a pathway to poverty alleviation, economic 

resilience, and the empowerment of marginalized populations, including a 

significant proportion of women in agriculture. The intricate symbiosis between 

humans and livestock, honed over millennia, has fostered diverse farming practices, 

each adapted to the unique environmental and cultural landscapes of regions across 

the world (M. Upton. 2010). Yet, this deeply rooted dependence underscores the 

need for robust management practices that can address the multifaceted challenges 

of today’s agricultural landscape. 

The advent of technological advancements has ushered in a new era for livestock 

management. Innovations in sensor technologies, data analytics, and precision 

farming techniques have transformed traditional practices, enabling farmers to 

monitor animal health and behaviour with unprecedented accuracy. These 

technologies offer the promise of optimizing resource use, enhancing animal 
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welfare, and minimizing the environmental footprint of livestock production 

(J.Schillings et al. 2021). 

In an age where climate change poses one of the greatest threats to agricultural 

sustainability and food security, the ability to harness data for informed decision-

making is indispensable (EU, 2023). It empowers farmers to navigate the 

complexities of modern agriculture, from managing the risks of disease outbreaks 

to addressing the nutritional needs of herds, thereby ensuring the resilience of food 

systems against the caprices of a changing climate. 

However, the potential of livestock management extends beyond the mere adoption 

of technologies. It encompasses the holistic understanding of animal welfare, the 

ethical stewardship of natural resources, and the pursuit of practices that align with 

the principles of sustainability.  

As the global community grapples with the challenges of feeding a projected 

population of nearly 10 billion by 2050, (Van Dijk et al., 2021) the imperative to 

adopt sustainable livestock management practices becomes increasingly urgent. 

These practices not only aim to meet the immediate nutritional demands but also 

safeguard the environment for future generations. The integration of sustainable 

feed sources, efficient water use, and the reduction of greenhouse gas emissions are 

among the myriad strategies that underscore the multifaceted approach required in 

contemporary livestock management (FAO, 2010). 

The significance of livestock management in global agriculture and food security is 

thus multifaceted, reflecting its role in nutritional provision, economic stability, and 

environmental sustainability. As we advance, the continued innovation in livestock 

management practices will be critical in addressing the dual challenges of ensuring 

food security and mitigating environmental impacts. The journey toward 

sustainable livestock management is complex and fraught with challenges, yet it 

remains one of the most promising pathways to achieving a balance between human 

needs and environmental stewardship. 

In light of these considerations, the pursuit of advanced livestock management 

practices is not merely an option but a necessity. The development and 

implementation of data-driven decision support systems, as investigated in this 

thesis, represent a pivotal step forward in this journey. By optimizing the 
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management of heat stress in dairy cows through technological innovations, this 

research contributes to the broader goal of enhancing livestock productivity and 

welfare in harmony with the environment. It underscores the evolving nature of 

livestock management as a field that is not only rooted in tradition but also 

propelled forward by innovation, in the relentless pursuit of global food security and 

sustainability. 

 

1.1. History and evolution of livestock management practices 

 

The history of livestock management is as old as human civilization itself. It has 

evolved over millennia, transitioning from rudimentary herding practices to 

sophisticated, technology-driven strategies. This journey from the past to the 

present of livestock management mirrors the broader trajectory of human 

development and underscores the critical role animals have played in shaping 

societies. 

In the early days of domestication, livestock management was primarily about 

survival. Domesticating animals such as cattle, sheep, goats, and pigs provided early 

humans with a reliable food source, which was a significant step up from the 

uncertainties of hunting and gathering. As civilizations began to form, these animals 

also became vital for labour, clothing, and transportation. This transition marked 

the first revolution in agriculture and set the stage for more stable human 

settlements. 

As societies advanced, the significance of livestock management grew. During the 

agricultural revolution, it wasn't just about managing animals for immediate needs. 

Historical analysis shows that this occurred particularly when humans perceived 

domesticated animals from yielding direct benefits to a broad complete 

understanding. They made the new domestic animal as an object of medicine: 

animals were refashioned into tools and targets of disease investigation, regulation, 

and management (H. Kean, P. Howell, 2018). It became a science of breeding, 

nourishing, and caring for animals to maximize their output and efficiency. Selective 

breeding practices emerged, emphasizing desirable traits like milk yield in cows or 
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wool quality in sheep. Such innovations were crucial in boosting agricultural 

productivity and supporting burgeoning populations. 

 

The industrial revolution brought further transformations. Mechanization reduced 

the reliance on animals for labour, shifting the focus of livestock management 

towards optimizing meat, dairy, and wool production. The developement of 

veterinary science played a pivotal role in this era, improving animal health and 

thereby their productivity (J.H. Carag et al. 2021). 

In recent times, the field of livestock management has been revolutionized by 

technology. Precision livestock farming, which uses data analytics, IoT, Internet of 

Things,  devices, and AI, Artificial Intelligence, has led to more efficient and humane 

practices. Modern techniques like GPS tracking, automated feeding systems, and 

health monitoring through wearable technology have not only improved farm 

efficiency but also animal welfare (J. Carolin et al. 2017). This is particularly relevant 

in the context of increasing concerns about ethical animal treatment and sustainable 

practices. Despite these advancements, the sector faces new challenges. The global 

demand for animal products is rising, as well as concerns about the environmental 

impact of livestock farming. Issues like methane emissions from cattle, deforestation 

for grazing, and the overuse of antibiotics present complex problems that require 

innovative solutions (J. Carolin et al. 2017). Moreover, climate change has 

introduced new variables into the equation. Fluctuating weather patterns, 

increasing incidents of droughts and floods, and emerging animal diseases have 

made livestock management more challenging. Adapting to these changes while 

ensuring food security and sustainability is one of the key challenges for the field 

today (C. Calvosa et.al). 

Therefore, livestock management is not just a story of human progress, but a 

narrative deeply intertwined with the challenges and aspirations of today’s 

civilization. From ensuring survival to enhancing efficiency and sustainability, this 

field reflects our evolving relationship with nature and technology. As we move 

forward, the focus is shifting towards balancing productivity with sustainability. The 

future of livestock management will likely be marked by further technological 

advancements, but these must be harmoniously integrated with environmental 
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stewardship and ethical considerations (FAO, 2017). This dynamic field continues 

to be ripe for exploration, innovation, and scholarly discussion, promising exciting 

opportunities for research and development. 

 

1.2. Advancements in sensor technologies in livestock 

management 

 

The landscape of livestock management has undergone a profound transformation, 

transitioning from age-old practices rooted in manual observation and intuition to 

the data-driven precision of modern farming. This evolution has been significantly 

propelled by advancements in sensor technologies, marking a new era where 

efficiency, productivity, and animal welfare are enhanced through innovation.  

Historically, livestock management was predominantly guided by the accumulated 

wisdom of generations, with decisions based on observable behavior and physical 

signs. While these methods have their merits, they are inherently limited by the 

scope of human observation and the latency in decision-making (Birch B. , 2023). 

The advent of sensor technologies has revolutionized this traditional landscape, 

introducing precision livestock farming (PLF) as a cornerstone of modern 

agricultural practices. PLF harnesses the power of real-time data collection, 

enabling a nuanced understanding of individual and herd-level dynamics that were 

previously unattainable (L. Tedeschi et al. 2021). This shift from empirical to 

evidence-based management represents a paradigm change, significantly impacting 

the way livestock are monitored, managed, and cared for.  

Sensor technologies in livestock management encompass an array of devices 

designed to monitor various aspects of animal health, behaviour, and environment. 

These technologies play a pivotal role in the daily management and strategic 

decision-making processes on farms. By providing continuous, real-time data, 

sensors empower farmers to make informed decisions swiftly, enhancing animal 

welfare and optimizing farm operations. (L. Tedeschi et al. 2021) The integration of 

sensor data into decision-making processes exemplifies a proactive approach to 
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management, where potential issues can be addressed before they escalate, and 

resources can be allocated more efficiently. 

 

1.2.1 Types of sensors technologies and their applications in livestock 

farming 

Sensor technologies in livestock farming can be categorized based on their 

application areas: health monitoring, environmental control, feeding management, 

and reproductive monitoring. Each category serves a distinct purpose, contributing 

to the holistic management of livestock farms, as summarized in the following: 

• Health Monitoring Sensors: wearable sensors attached to animals, such as ear 

tags, collars, and leg bands, provide invaluable data on vital signs (heart rate, 

body temperature), activity levels (movement, lying time), and behaviours 

indicative of health status (rumination, ingestion, panting). These sensors enable 

early detection of illnesses, allowing for timely intervention and reducing the 

need for broad-spectrum antibiotic treatments. 

• Environmental Sensors: these sensors monitor the conditions within barns or 

grazing fields, measuring parameters like temperature, humidity, and air quality. 

The data collected helps in managing the microclimate to ensure it remains 

within optimal ranges for animal comfort and health, directly influencing 

productivity and welfare. 

• Feeding Management Sensors: technologies deployed in automated feeding 

systems and milk parlours collect data on feed intake, milk yield, and milk 

composition. This information is crucial for customizing feeding strategies to 

meet the nutritional needs of individual animals or groups, optimizing growth, 

and lactation performance. 

• Reproductive Monitoring Sensors: sensors designed to detect oestrus and 

monitor reproductive health play a critical role in breeding management. By 

accurately predicting ovulation times, these technologies improve breeding 

efficiency and success rates, directly impacting farm productivity. 

The application of these sensor technologies in livestock farming underscores a 

significant move towards individualized animal management. By treating animals 
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as individuals, with unique health, nutritional, and comfort needs, PLF elevates the 

standards of care and management practices. The implementation of sensor 

technologies in livestock management has demonstrated substantial benefits, 

including improved animal welfare, increased operational efficiency, and enhanced 

productivity. These technologies facilitate a deeper understanding of animal needs 

and farm dynamics, enabling more precise and responsive management practices 

(Rana et al. 2023). 

 

1.3. The role of data in livestock management 

Following the historical trajectory of livestock management, the recent chapter in 

this evolutionary tale is marked by the advent and integration of data analytics and 

technology. The significant role that data plays in modern livestock management 

cannot be overstated, as it encapsulates the shift from traditional, intuition-based 

practices to precision and evidence-based decision-making processes. 

In contemporary livestock management, data serves as the linchpin that connects 

various aspects of animal husbandry. This transition to a data-centric approach 

represents a paradigm shift in how livestock are cared for and managed. The 

emergence of PLF is a testament to this change. PLF employs a range of technologies 

to continuously monitor and collect data on animal health, behaviour, and 

environment. This constant stream of data offers unprecedented insights into the 

well-being and productivity of each animal, allowing for timely interventions and 

personalized care (Suresh Neethirajan, 2020). 

The implications of this data-driven approach are profound. For instance, by 

analysing patterns in eating behaviour or movement, farmers can swiftly identify 

health issues, often before physical symptoms manifest. This early detection not 

only improves animal welfare but also reduces the economic losses associated with 

disease. Similarly, data on milk yield and quality can inform breeding decisions, 

leading to genetic improvements across herds. Moreover, data analytics in livestock 

management extends beyond individual animal care. It encompasses resource 

optimization and environmental management, critical in the context of sustainable 

farming practices. For example, data on feed consumption and conversion rates 
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helps optimize feeding strategies, reducing waste and lowering costs. In terms of 

environmental sustainability, data on livestock emissions contributes to more 

informed strategies to mitigate the ecological footprint of farming activities. 

(Kaledio P, Russell E, 2023). 

The role of data also extends to regulatory compliance and traceability, increasingly 

important in a world focused on food safety and ethical production. Data systems 

can track the lineage of animals, their health history, and the treatments they have 

received, ensuring transparency and quality assurance from farm to table (Kaledio 

P, Russell E, 2023). 

Despite the clear benefits, the integration of data in livestock management is not 

without challenges. The sheer volume and variety of data can be overwhelming, 

requiring sophisticated tools for analysis and interpretation. Additionally, the digital 

divide remains a concern, with access to advanced technologies often limited to 

larger, more affluent farms, potentially widening the gap between small and large-

scale operations (Kaledio P, Russell E, 2023). 

Within the state of the art, the role of data in livestock management represents the 

convergence of agriculture with digital technology, opening new frontiers for 

efficiency, sustainability, and animal welfare. As we venture more further into the 

21st century, the continue evolution of this field will likely hinge on the innovative 

use of data, requiring continuous research, development, and adaptation. The 

potential for further advancements in this specific area is vast, promising an 

upcoming future where livestock management is not only more efficient but also 

more attuned to the needs of animals and the environment. This future, built on the 

foundation of data, holds the promise of transforming livestock management into a 

more precise, humane, and, more importantly, sustainable practice. 

 

1.4.  Heat stress in dairy cows: a global overview 

 

Among the challenges typically present in dairy livestock farming, heat stress in 

dairy cows emerges as a critical concern. The phenomenon, exacerbated by 

changing environmental conditions, underscores the necessity for innovative 
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approaches to monitoring and management, particularly in regions where climatic 

impacts are most pronounced (S.L. Cartwright, 2023). Heat stress, a condition 

arising from the inability of animals to dissipate body heat effectively, has far-

reaching implications for health, productivity, and welfare in dairy cattle. The 

phenomenon is particularly acute in Mediterranean regions of europe, including 

Spain and Italy, where rising temperatures and humidity levels, attributed to global 

climate change, exacerbate the challenges faced by livestock (Sabrina Hempel et al., 

2019). The implications of these environmental shifts are profound, affecting not 

only the physiological well-being of dairy cows but also the economic sustainability 

of farms reliant on their productivity (S.L. Cartwright, 2023). 

In response to these challenges, the role of sensor technologies in livestock 

management has become increasingly pivotal. Advancements in this domain offer a 

promising avenue for mitigating the impacts of heat stress through precise, real-

time monitoring of animal health and environmental conditions. Wearable sensors, 

environmental monitoring systems, and data analytics platforms represent the 

forefront of this technological revolution, enabling farmers to make informed 

decisions that enhance animal welfare and farm efficiency. These tools provide 

actionable insights, facilitating the early detection of heat stress symptoms and the 

implementation of preventative measures, such as optimized cooling systems, 

altered feeding strategies, and modified housing conditions (W. Shu et al., 2021). 

By exploring the intersection of environmental challenges and technological 

solutions, this research underscores the significance of precision livestock farming 

in the modern era. The insights derived from this study aim to inform not only the 

academic community but also practitioners and policymakers, highlighting the 

potential of technology to revolutionize livestock management practices in the face 

of climate change. 
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Chapter 2: Experimental study 

This study marks a practical journey into the heart of dairy farming, where the well-

being of cows is closely intertwined with farm productivity and the broader 

agricultural economy (Bjørn Gunnar Hansen, 2023). It is designed as a compass to 

navigate through the complex challenges of heat stress—a common yet formidable 

foe that can significantly impact animal health and farm profitability (D.Ramendra 

et al., 2016). At the forefront of our exploration is a detailed collection of data, a 

critical step that forms the bedrock of our research. From the rhythms of daily cow 

behaviour to the subtle shifts in temperature and humidity, every piece of data 

collected is a puzzle piece essential to completing the bigger picture of farm life. 

Transforming this data into a coherent narrative is where the analytical expertise 

truly comes into play. Through rigorous statistical analysis and the development of 

predictive models, we endeavour to comprehend, forecast, and manage the various 

factors that culminate in heat stress. The ultimate ambition is to equip dairy farmers 

with a decision-support tool, refined by data, that promotes timely and informed 

actions to protect the health of their cattle and optimize farm productivity through 

a personalized shower plan to use during summertime. 

It is worth to highlight that the experimental part of this thesis is more than numbers 

and charts, It's about creating a future where dairy farms operate smoothly, where 

cows are healthier, and where farming is not just about making a living but about 

fostering a thriving, sustainable way of life. The hope is to contribute to make a step 

towards a smarter, kinder approach to farming—one that pays off for everyone, 

from farmer to cow to consumer.  
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2.1. Materials and Methods 

 

The data for the study were collected from “MORE HOLSTEIN” Dairy cattle farm 

located in Bétera, the northermost region of Valencia city, Spain, where 

approximately 3.500 adult heads were breed. The original dataset included records 

collected from specific chosen groups of lactating cows (n = 65 ) from 26th of June 

2022 to 30th of September 2022.  Each record included the following informations:  

• Animal collar ID, indicated as identification number of each on-neck 

accelerometers associated with each observed cow; 

• Tested lactation group number, divided into two mid lactation groups (16, with 

additional shower session, and 17), fresh cows group (7), and end lactation/ 

drying cows group (20); 

• Accelerometer data, containing all the behavioural records ordered by cow ID 

number (COLLAR), group number (GROUP NUMBER), and behaviours 

(Ingestion, Ruminatio,Panting) expressed as “minutes into behaviour”; 

• Milk production data, containing the amount of produced by each observed cow. 

The milking data is divided into milk production recorded in each milking 

session (6:00, 14:00, 22:00) and the daily total milk production (Total); 

• Meteorological dataset: a list of meteorological records of ambient temperature 

and humidity levels recorded by an on farm meteo-station. Data are expressed 

single hourly record of Temperature and Humidity levels; 

• Cow feed consumption chart: data were retrieved by on an on farm weight scale 

and a digital scale associated with the unifeed mixer. The total daily consumption 

was calculated by subtracting the initial feed weight administered in each group 

and the trough residue. A second calculation has been deployed in order to an 

individual consumption chart for each observed group. 

• Activity list: a list of hourly activity that identify the activity in which the animals 

were engaged. 

Dairy cows were housed in free paddocks with a concrete floor, and sand-mix was 

used for bedding, which was renewed every weekdays. The animals were provided 

with 23 m2/head space and an 80 cm/head front manger. Cows were milked trice 
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daily in herring-bone milking parlors equipped with an GEA FT® milk analysis 

system (GEA®  Herd management). During summertime, cows have been showered 

for heat-stress mitigation. The frequency and time of shower were object of the 

research, so each observed group had a specific shower plan. 

Milk production was recorded directly from the milking system and was available 

at the official milk recording date. The stage of lactation (SOL) was determined by 

considering a 30-day in milk (DIM) interval, defining the Post Partum group; from 

91 to 150 for mid-lactation groups; from 151 to 210 for drying group. Parity was not 

considered for this specific research. There was no specific requisite for the 

minimum number of events recorded. In addition, milk yield and behaviour 

parameters did not undergo any pruning, in order to maintain records as real as 

possible for the predictive model creation. In conclusion, the final dataset used for 

statistical analysis and modelling consisted of 620616 records collected on the 

sampling days, covering cows.  

 

2.2. THI calculation 

 

At the time of retrieval, the meteorological dataset is missing a key component for 

the heat stress analysis in cow: THI Index, which is an index that measures 

environmental stress in animals and is based on temperature and humidity levels 

(Bohmanova, 2007). In particular: 

Daily THI values were determined for the experimental period using the equation, 

THI Formula for Dairy Cows (Bohmanova, 2007): 

THI = (1.8 × temperature) - [(0.55 - 0.0055 × humidity) × (1.8 × temperature - 26.8)] + 32 
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Figure 1. THI Index progress in sampled observation period, 2022 

 

Figure 1 provides a visual representation of THI over a series of months, showing 

15-day periods measurements and their variability. It suggests a cyclical pattern in 

the data with elevated mean THI levels, which may be relevant for understanding 

environmental conditions affecting animal welfare. 

The first chart presents the Temperature Humidity Index (THI) values across 

various periods in 2022 for Spain. THI is a critical indicator in dairy farming, as it 

combines temperature and humidity to gauge the risk of heat stress in cows. High 

THI values, generally above 68, suggest conditions that could lead to heat stress, 

which in turn can adversely affect cows' milk production, reproduction, and health. 

(Bohmanova, 2007) The chart shows that for much of the time, especially from June 

to September, the THI values are well above this threshold, indicating a high risk of 

heat stress during these warmer months, as highlighted by the horizontal line placed 

at 68 index point. 
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Figure 2. Temperature and Humidity levels throughout the observation period, 2022 

 

Figure 2 displays temperature and humidity independently for the same periods. 

Humidity values are consistently high, hovering above 60%, which is significant 

because higher humidity levels, above 45%, can intensify the effects of heat by 

reducing the ability of animals to cool themselves (W.Baldwin et al. 2023). The 

temperature remains relatively lower and stable, but when combined with high 

humidity, it creates a problematic environment for dairy cows as reflected in the THI 

values. However, temperature above 22° C can induce heat stress independently 

from its association with humidity levels (Bohmanova, 2007). The relevance of these 

charts in a dairy farming context is high. They underscore the periods when cows 

are at a greater risk for heat stress and thus inform management decisions.  
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2.3. Milk production. 

 

The raw dataset contains all the productive data from each observed cow. Milk 

production is indicated within each cow for every day of production during the 

observation period, from 24/06/2022 to 22/09/2022. The different cow groups are 

classified as it follows: 

• 16: Mid-Lactation group with shower time plan A; 

• 17: Mid-Lactation group with added shower time plan B; 

• 7: Postpartum group with added shower time; 

• 20: Dry group with added shower time. 

Every day of production is divided into 3 reference milking sessions: 06:00, 14:00, 

22:00. The total daily production column is added to the dataset in order to help 

check the production progress of each cow. After a quick data analysis, the mean and 

total trends of milk production have been isolated. 

 

                   

                               Figure 3. Average milk production recorded daily for each milking session 
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Figure 4. Total milk production recorded daily from each group 

Figure 3, "Average Production by Group and Milking Session," shows the average 

milk production across various groups during milking sessions. The average 

production levels appear quite consistent across the groups, with only slight 

variations. None of the groups stands out as significantly higher or lower than the 

others due to a higher number of animals sampled for this specific study.  

Figure 4, "Total Daily Production by Group," presents a starkly different picture. 

Here, we see the total volume of milk produced by each group over an entire day. 

The volumes change across the different groups due to the physiological stage of 

lactation of the different animals across the groups, with the mid lactation groups 

(16, 17) producing significantly higher quantities of milk as opposed to the dry 

group (20) and postpartum group (7).  

 

2.4. Behaviour analysis 

 

The current initial dataset contains individual accelerometer data of three main 

behaviours: Ingestion, Rumination and Panting. All the data are expressed as 

number of minutes spent in each activity for every hour of the day. The observation 

period goes from 20/06/2022 to 30/09/2022. A quick statistical analysis has 

underlined the following values: 
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Figure 5. Statistical and summaries of the three behaviours 

The summary statistics provided for Ingestion, Rumination, and Panting represent 

time spent on these activities measured in hours. 

Ingestion 

The statistics for Ingestion show that there is at least one cow (minimum value) that 

did not spend any time eating, which could indicate an issue, as cows typically eat 

for several hours a day. The first quartile at 5.00 suggests that 25% of cows spent 

less than 5 hours eating, which may be lower than expected for normal behavior, 

assuming a typical range of 3-5 hours of eating per day for high-producing dairy 

cows. The median value of 11.00 is more in line with normal behavior, though it 

suggests that half of the cows are eating less than the expected amount. A mean 

(average) of 14.88 could indicate that some cows are eating significantly more than 

others, skewing the average upwards, especially since the maximum value is 99.00, 

which is unusually high and could be an outlier or error. 

 

Rumination 

Rumination normally takes up about 30-40% of a cow's day. With a minimum of 

0.00 and a first quartile at 22.00, it seems that at least 25% of cows are ruminating 

less than expected. The median of 33.00 and mean of 33.07 are both well within the 

typical range, indicating that at least half the cows are exhibiting normal rumination 

behavior. The max value at 98.00 is exceptionally high and not physiologically 

typical for rumination time, as it would leave almost no time for other essential 

behaviors. 
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Panting 

Panting is a response to heat stress; cows typically pant less than they ruminate or 

eat. The provided statistics reflect this, with a median of 7.00, which would be 

expected on hotter days. A mean of 13.38 and a third quartile at 18.00 suggest that 

a significant number of cows are spending a considerable amount of time panting, 

possibly indicating a heat stress issue within the herd. The maximum value of 85.00 

is extremely high for panting and is likely indicative of severe heat stress or a data 

recording error. 

 

Comparison with Normal Physiological Behaviour 

The median and mean values for rumination are consistent with normal cow 

behaviour, suggesting that the dataset includes many cows with typical rumination 

patterns. Ingestion and panting times show more variation, with the average (mean) 

higher than the median, indicating some cows are spending an unusually high 

amount of time on these behaviours. The max values for all three behaviours are 

unusually high and may represent outliers or errors in data collection. 

Additional descriptive analysis: Boxplot diagram 

A boxplot is a method for graphically showing the location, spread and skewness 

groups of numerical data through their quartiles.  The boxplot analysis of the three 

behaviours has been generated as it follows: 

 

 

Figure 6. A boxplot of the Ingestion behaviour 
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The median value, indicated by the line within the box (Figure 6), is situated quite 

low on the scale. Altough it falls inside an optimal ingestion daily range (3 to 5 hours 

per day spent in  eating) this suggests that at least half of the cows are spending a 

relatively small portion of each hour engaged in eating, but a significant portion of 

animals are shown as not eating sufficiently. The interquartile range is narrow, 

showing that the middle 50% of cows have a relatively consistent ingestion 

behavior. However, the lower whisker extends quite close to zero, and the presence 

of a lower adjacent value suggests that there are cows with very low ingestion times. 

This could be due to various factors such as feed availability, health issues, or 

competition within the herd. There are several outliers showing that some cows 

have exceptionally high ingestion times. While higher ingestion times could be a sign 

of good appetite, such extreme outliers might also indicate stress, competition for 

food, or other behavioral issues. In summary, this boxplot suggests variability in 

ingestion behavior among the cows, with a number of them potentially not feeding 

as expected. 

 

Figure 7. A boxplot of the Rumination behaviour 

The boxplot of rumination activity (Figure 7) shows the majority of data  clustered 

within a middle range, with a median value that ideally falls within a range indicative 

of normal rumination behavior for dairy cows (18-24 minutes per hour). The 

median is centered and the box is symmetrical,  suggesting that half of the cows are 

ruminating within a consistent and potentially healthy range. The length of the 
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whiskers would indicate a low variability of rumination behavior within the herd, 

and the presence of outliers above the upper whisker points to cows that are 

spending an unusually high amount of time ruminating, which might be due to 

factors such as diet, stress, or individual health issues. The median line  near the 

middle of the box and the box  not skewed significantly towards the top or bottom 

indicate that there is a physiological time into the behaviour for the majority of the 

herd. There are not may outliers, suggesting that may there be alterated data, as well 

as a small portion of animals ruminating for an unnatural long time, leading to a 

possible presence of abnormalities in the herd. 

 

Figure 8. A boxplot of the Panting behaviour 

The boxplot of panting activity (Figure 8) shows the majority of data clustered 

within a low range, with a median falling toward the lower end of the box, suggesting 

that more than half the cows have lower panting times on average. The IQR falls 

larger in the third quartile of the box, neat indication of a larger variability in panting 

times among the cows and larger time spent in panting for a greater portion of cows. 

The presence of many high-value outliers could indicate episodes of high 

temperature or humidity affecting the cows, prompting a necessary review of heat 

abatement strategies on the farm. 

 

Delving into a specific behavioural analysis, it is possible to discover specific hourly 

trends of all the behaviours. This can be carried out, searching for descriptive 
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patterns of the behaviours exploited in specific times of the day, as summarized in 

Figure 9: The provided times for the peaks of ingestion, rumination, and panting 

behaviours in dairy cows offer a snapshot into the daily patterns of these essential 

activities. 

 

Figure 9. Qualitative analysis of the most and least exploitation for each observed behaviour 

 

Ingestion 

-Most Ingestion at 20:00: This peak suggests that cows are consuming the most feed in 

the evening. This could be due to cooler ambient temperatures making it more 

comfortable to eat for longer periods of time. 

- Least Ingestion at 06:00: The lowest level of feeding activity occurring in the early 

morning might reflect a post-rumination rest period and the coincidence with the first 

milking session, psychologically preparing the cows for the start of a new daily cycle. 

 

Rumination 

-Most Rumination at 05:00: High rumination early in the morning indicates cows are 

likely processing feed consumed the previous day. This is expected as cows often 

ruminate more actively after periods of rest and when they are not actively feeding. 

- Least Rumination at 20:00: The decrease in rumination during the evening hours 

coincides with the peak ingestion time, which is logical since cows will typically spend 

time eating rather than ruminating. 

 

Panting 

- Most Panting at 14:00: A midday peak in panting is consistent with the hottest part of 

the day, especially in the local climates with high temperatures that contribute to heat 

stress. 

- Least Panting at 01:00: The least amount of panting at night aligns with lower 

temperatures and inactive periods when cows are less likely to be heat stressed. 



26 

 

The timing of these behaviours is significant for managing the health and productivity of 

the dairy herd. For instance, understanding that cows eat the most in the evening can 

influence decisions about feeding times and ration formulations to ensure optimal nutrient 

uptake and digestion. 

The rumination peaks can inform the scheduling of quiet, restful periods that facilitate 

this crucial digestive process, with potential impacts on milk quality and quantity. 

 Knowledge of panting patterns drive heat abatement strategies, ensuring that cooling 

efforts are concentrated during the hottest parts of the day to alleviate the effects of heat 

stress. 
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Chapter 3: Explorative Data Analysis 

 

The study was structured in THREE parts: in the first part, the effect of THI index 

levels on MILK YIELD, BHEAVIOUR EXPLOITATION and MULTIVARIATE 

INFLUENCE was analysed, while in the second part, the aim was to try to clarify the 

effect of the current Shower plan on heat stress and its future modification for heat 

stress mitigation. The last part of this study is dedicated to Model Building and 

model testing for Shower plan personalization.  

 

3.1. The effects of THI on milk production 

 

The primary hypothesis of the study is that THI has a direct effect on milk production. This 

hypothesis posits that as THI rises, the physiological strain imposed on dairy cows escalates, 

resulting in diminished milk yields. Our statistical analysis aims to explore the magnitude and 

significance of this relationship, utilizing correlation matrices to elucidate how changes in THI 

correlate with variations in milk production volumes. Conversely, our null hypothesis maintains 

that THI has no effect on milk production. Under this scenario, any observed variations in milk 

yield would be attributed to other factors or random fluctuations, independent of THI levels. 

The graphical representation of the relationship monitored by the milk production in the three 

milking sessions has been shown in Figures 10, 11, and 12: 

 

Figure 10. Milk production trends under the influence of THI at 6:00 
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Figure 11.  Milk production trends under the influence of THI at 14:00 

 

Figure 12.  Milk production trends under the influence of THI at 22:00 

In order to reject the null hypothesis and affirm the role of THI in influencing dairy cow 

productivity, or to conclude that THI is not a determinant factor within the context of our data set, 

we evaluate the statistical significance of the relationship between THI and milk production. 

The relationship has been metaethically described expressing a simple linear relationship: 

𝒀 = 𝜷𝟎 + 𝜷𝟏 × 𝑻𝑯𝑰 + 𝝐 

Where: 

Y is the milk production. 

β0 is representing the expected milk production when THI is zero (theoretically, 

since THI cannot be zero). 

β1 is representing the expected change in milk production for each unit change in 

THI. 

THI is the Temperature-Humidity Index. 
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ϵ is the error term, accounting for the variability in milk production that is not 

explained by THI. 

This model assumes a linear decline in milk production with increasing THI, 

meaning for every unit increase in THI, milk production is expected to decrease by 

β1. The resulting correlation calculation between THI and total milk production has 

generated the following coefficient: -0.1375. The negative sign of the correlation 

coefficient indicates that as the THI increases, indicating higher levels of heat stress, 

the total milk production tends to decrease. This relationship is consistent with the 

understanding that heat stress negatively affects dairy cow productivity, impacting 

their ability to produce milk effectively. The strength of the correlation is light to 

moderate, with a value of -0.1375. This suggests a significant inverse relationship, 

meaning that changes in THI have a notable impact on milk production. Even if THI 

influences mil production, we cannot exclude also the presence of other factors 

affecting milk production. 

In summary, the correlation coefficient of -0.1375 between milk production and 

average THI highlights the significant impact of heat stress on dairy cow milk 

production, emphasizing the need for effective heat stress management strategies 

in dairy farming. Testing the quality of the hypothesis strength leads to a direct 

assessment of the THI impact over the milk production observed in this dataset. 

The testing has been carried on by a Two-Sample T-Test or Welch test. 

 

Welch Two Sample t-test: 

This test compares the means of two independent samples (THI and milk 

production, denoted as x and y). The t-value of -38.732 is again highly significant, 

with a p-value less than 2.2e-16, leading to the rejection of the null hypothesis that 

the true difference in means is equal to 0. 

 The negative t-value indicates that the mean of x (THI) is less than the mean of y 

(milk production). The 95% confidence interval for the difference in means ranges 

from -94599.14 to -85434.46, which doesn't cross zero, reinforcing that this 

difference is significant and not due to random chance. 
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The mean values for x (77.92276) and y (90094.72390) indicate that while THI 

values are high, suggesting stressful conditions for the cows, milk production figures 

are also very high. The Welch test is typically used when the variances of the two 

samples are assumed to be different, which might be the case here given the large 

difference in scale between THI and milk production figures. 

 

Interpretation: 

The significant difference in means between the average THI (THI_M) and total milk 

production (TOT_MILK), as shown by the Welch test, underscores the potential 

impact of THI on milk production. The negative t-value and the confidence interval 

suggest that as THI increases (indicating more heat stress), there might be a 

significant decrease in milk production, which aligns with the negative correlation 

previously discussed. Yet, the sample means provided show that despite high THI 

values, the average milk production is high. This could imply that the dataset 

includes periods or conditions where cows are still able to maintain high 

productivity, due to average effective heat stress mitigation strategies on the farm 

in question. Moreover, the results underscore the importance of considering 

environmental stressors in dairy farm management and the potential role of 

technological interventions to mitigate these impacts. 

 

 

 

 

 

 

 

 

 

 

 



31 

 

3.2. The effects of THI in Behaviour exploitation 

 

Following the analysis on the dataset, the second goal of this EDA is to determine whether THI 

level have an impact on the behavioural exploitation of the observed cows (Ingestion, Rumination, 

Panting). The mathematical relationships between THI and the behaviors, assuming 

linear relationships, can be expressed as follows: 

Ingestion=  𝜷𝟎, 𝑰𝒏𝒈 + 𝜷𝟏, 𝑰𝒏𝒈 × 𝑻𝑯𝑰 + 𝝐𝑰𝒏𝒈 

 where: 

β0,Ing is the x-intercept for ingestion, representing the baseline ingestion when THI 

is zero. 

β1,Ing is the slope for ingestion, representing the change in ingestion behavior for 

each unit change in THI. 

ϵIng is the error term for the ingestion model. 

 

Rumination= 𝜷𝟎, 𝑹𝒖𝒎 + 𝜷𝟏, 𝑹𝒖𝒎 × 𝑻𝑯𝑰 + 𝝐𝑹𝒖𝒎 

where: 

β0,Rum is the x-intercept for rumination. 

β1,Rum is the slope for rumination. 

ϵRum is the error term for the rumination model. 

 

Panting= 𝜷𝟎, 𝑷𝒂𝒏𝒕 + 𝜷𝟏, 𝑷𝒂𝒏𝒕 × 𝑻𝑯𝑰 + 𝝐𝑷𝒂𝒏𝒕 

where: 

β0,Pant is the x-intercept for panting. 

β1,Pant is the slope for panting, which is expected to be positive as panting is a 

direct response to heat stress. 

ϵPant is the error term for the panting model. 

The correlation matrix is graphically represented in Figure 13: 
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Figure 13. Correlation heatmap of behaviours relationships' under the infulence of THI 

- Total Ingestion and Rumination time (Ingestion_T and Rumination_T) (0.81): This strong 

positive correlation indicates that as ingestion time increases, rumination time also increases. This 

relationship is expected as more feed intake generally requires more rumination time for proper 

digestion. 

- Total Ingestion and Panting time (Ingestion_T and Panting_T) (0.55): A moderate positive 

correlation suggests that as ingestion time increases, panting time also tends to increase. This 

could indicate that cows that eat more may also be more prone to heat stress, or it could reflect 

that cows are more active (and thus pant more) during times when they are also eating more. 

-  Total Ingestion time and Average THI (Ingestion_T and THI_M) (-0.19): A weak negative 

correlation means that higher THI values are slightly associated with lower ingestion times. This 

is consistent with the understanding that heat stress can reduce feed intake in cows. 

- Total Rumination and Panting time (Rumination_T and Panting_T) (0.48): A moderate 

positive correlation indicates that cows with higher rumination times also tend to have higher 

panting times. Since rumination is a heat-producing process, it's plausible that cows might pant 

more as rumination increases. 

- Total Rumination time and Average THI (Rumination_T and THI_M) (-0.30): This 

negative correlation suggests that as the THI increases, indicating hotter conditions, cows spend 

less time ruminating. This makes sense because heat stress can disrupt normal rumination 

behavior. 

- Total Panting time and average THI (Panting_T and THI_M( (0.45): A moderate positive 

correlation is observed here, which indicates that as THI increases, panting time also increases. 
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This is to be expected as THI is an indicator of heat stress, and panting is a cooling mechanism in 

cows. The negative correlations between THI and both ingestion and rumination times suggest 

that higher temperatures and humidity levels, may disrupt normal feeding behaviors and could 

potentially lead to lower milk production, as well as  overall cow health. Meanwhile, the positive 

correlation between panting time and THI emphasizes the need for effective heat stress 

management strategies, especially in hot climates or during summer months. 

 

3.3. Multivariate Analysis 

 

Since the relationship between Panting behaviour and THI has not shown a strong 

correlation score, this could denote the presence of  multifactorial causes that can 

decrease the effectiveness of the relationship itself. 

The last step of this exploratory data analysis would investigate the interrelation 

between milk production, behaviours (Ingestion, Rumination, Panting), and 

environmental factors (THI, Temperature, Humidity, Feed Consumption). 

𝑴𝒊𝒍𝒌𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 = 𝜷𝟎 + 𝜷𝟏 × 𝑰𝒏𝒈𝒆𝒔𝒕𝒊𝒐𝒏 + 𝜷𝟐 × 𝑭𝒆𝒆𝒅𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 + 

𝜷𝟑 × 𝑹𝒖𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏 + 𝜷𝟒 × 𝑻𝑯𝑰 + 𝜷𝟓 × 𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆 + 

𝜷𝟔 × 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 + 𝜷𝟕 × 𝑷𝒂𝒏𝒕𝒊𝒏𝒈 + 𝝐 

Which: 

Milk Production: The dependent variable subject of the correlations. 

β0: The intercept, representing the expected value of milk production when all other 

variables are zero. 

β1 to β7β7: The coefficients for each independent variable, which measure the 

expected change in milk production for a one-unit change in that variable, holding 

all other variables constant. 

Ingestion, Feed Consumption, Rumination: The dependent variables that are 

thought to be affected by the independent variables and in turn affect milk 

production. 

 THI, Temperature, Humidity, Panting: The independent variables that are 

expected to influence both the dependent variables and milk production directly. 

ϵ: The error term, representing unobserved factors that affect milk production. 

The graphical resolution of the correlation matrix shows as in Figure 14: 
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Figure 14. Multivariate correlation matrix. 

 

Ingestion and Rumination (0.39): A moderate positive correlation indicates that 

as cows spend more time eating, they also spend more time ruminating. This 

relationship is expected as increased feed intake typically requires more rumination 

for digestion. 

Ingestion and Panting (-0.42): A moderate negative correlation suggests that as 

ingestion increases, panting decreases, which may indicate that cows eat less when 

they are under heat stress. 

Rumination and Panting (-0.75): A strong negative correlation; as cows spend 

more time ruminating, they spend significantly less time panting. This might be 

explained by the fact that rumination typically occurs during cooler periods of rest, 

while panting is associated with heat stress. Added confirmation comes with the 

moderate negative correlation between rumination and THI (-0.31), stating less 

rumination with increased heat stress conditions. 

Panting and THI (0.56): A strong positive correlation reflects that panting 

increases with higher THI values, confirming that panting is a behavioral response 

to heat stress, evenly positively correlated with temperature (0.40). 
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THI and Temperature (0.77): A strong positive correlation, indicating that as 

temperature increases, the THI also increases, which is consistent since THI is a 

function of both temperature and humidity. 

Milk Production and Feed Consumption (0.61): A strong positive correlation 

indicates that higher feed consumption is associated with higher milk production, 

which is a well-documented relationship in dairy farming. 

The significance of this data lies in its ability to guide farm management practices. 

The relationships between cow behavior, environmental factors, and milk 

production can help optimize conditions for animal welfare and productivity. The 

strong negative relationship between humidity and milk production may prompt 

the better use of cooling systems during humid periods to maintain milk output. The 

correlations involving panting and THI could also support the implementation of 

heat stress mitigation strategies to ensure cow comfort and sustained milk 

production at its best. 
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Chapter 4: Shower Plan Programming 

 

Starting from the insightful correlations illustrated in previous sections, the second 

part of the experimental chapter aims to design and validate a data-driven shower 

plan for dairy cows. The imperative for such an intervention crystallizes from the 

observed inverse relationships between heat stress indicators, such as THI, and 

crucial aspects of dairy cow productivity and welfare, notably rumination time and 

milk yield. The correlation heatmap in Figure 14 laid a compelling foundation, 

revealing that as THI escalates, the vital behaviours of rumination, ingestion, and milk 

production exhibit a marked decline. This trend underscores the impact of heat stress 

on dairy cow physiology, echoing the need for proactive management strategies. 

Given the delicate interplay between environmental conditions and animal well-being 

delineated by our analysis, this chapter endeavours to harness the predictive power 

of the amassed data. Exploiting the positive correlations between ingestion time and 

milk production, we aim to update a bespoke showering regimen that mitigates the 

discomfort inflicted by heat stress. The premise of this regimen is to synchronize 

cooling interventions, namely showering, with the cows' natural behavioural rhythms 

and the diurnal fluctuations of THI, to optimize welfare and productivity. 

This experimental chapter is not merely an exploration of empirical data but an 

ambitious stride towards a tangible application that could revolutionize the paradigm 

of dairy farm management under the spectre of global climate change. It aims to 

calibrate shower timing, duration, and frequency to the thermal thresholds signified 

by our findings, thus offering a tailored solution to the heat stress conundrum.  
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4.1. Descriptive Statistics 

A preliminar qualitative analysis is useful to inspect whether the current shower 

plans have any effect on the analysed herd groups. The first important aspect to 

determine would be the research of any positive effects of showers over the panting 

behaviour. Figure 15 graphically compares panting scores between showered cows 

(right boxplot) and not showered cows (left boxplot). 

 

 

Figure 15. A Boxplot  showing the effect of the shower plan in showered (1) cows as opposed to not showered (0) 
ones. 

Median: The median panting score is approximately the same for both showered 

and not showered groups, suggesting that showering does not have a clear effect on 

the median level of panting behavior. 

Spread of Data: The interquartile range is slightly tighter for the showered cows, 

which could indicate that showering may lead to a more consistent (homogenous) 

response in panting behavior across the group. However, the difference is not 

pronounced. 

Outliers: There are outliers in both groups, more extreme for  the showered cows, 

indicating episodes of very high panting scores.  

Range: Both groups show a wide range of panting scores, but the range is slightly 

more compressed for the showered cows, indicating that showering might reduce 

the variability in panting behavior to some extent. 
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While summarizing the two boxplots indicates that showering does not significantly 

alter the median panting behavior, the reduced spread and range in the showered 

group could imply a moderate effect of showering on the consistency of panting 

behavior across that group. Additionally, the presence of outliers, especially in the 

showered group, suggests that both shower factors and others than showering 

might influence panting scores, and these would need to be investigated to 

understand the full impact of showering on heat stress management. 

 

The second aspect to analyse would be to determine if the current shower plan has 

any effect over milk production due to heat tress mitigation. Figures 16 to 18 

graphically compare milk production performance between showered cows (right 

boxplot) and not showered cows (left boxplot) throughout the three milking 

sessions. 

 

 

Figure 16. Milk production under the influence of the shower plan in 6 am milking session 
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Figure 17.. Milk production under the influence of the shower plan in 2 pm milking session 

 

Figure 18. Milk production under the influence of the shower plan in 10 pm milking session 

Median Milk Production: The median milk production appears very similar for 

both showered and non-showered cows, indicating that showering does not have a 

strong median effect on milk production. 

Interquartile Range (IQR): The IQR, which indicates the middle 50% of the data, is 

comparable for both groups. This suggests that showering right before milking and 

randomly during the hottest hours of the day has not markedly changed the central 

tendency of milk production in the observed cows. 

Range of Milk Production: The range is similar for both groups, indicating that 

showering does not significantly change the overall variability in milk production. 

Outliers: Both the showered and non-showered groups display outliers, with 

individual data points scattered above the upper whisker. The presence of outliers 
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in both groups suggests that there are cows with milk production that is notably 

different from the main group.  

Based on the boxplot, it can be inferred that the act of showering cows does not have 

a substantial impact on the central tendency of milk production. However, it's 

important to consider other factors that could influence milk yield, such as the cows' 

overall health, nutritional status, and the ambient conditions of the days measured. 

The similar distribution of milk production across showered and non-showered 

groups might suggest that other management practices or environmental factors are 

at play, which may be equally or more influential on milk production than the 

showering routine at the specified time. 

 

4.2. Model building. 

Interaction models provide insights into how various factors combine to influence 

outcomes like panting behaviour and milk production. The relationship between 

milk production, panting times and environmental conditions is already neatly 

affirmed. Therefore, creating a direct relationship between all beahviours, 

environmental conditions, and milk production can help direct the effects of 

management practices on cow wellness and heat stress alleviation. All that being said, 

creating a personalised shower plan requires to consider all the influential variables 

affecting and enhancing heat stress response in dairy cows. For its ease of use and 

computational reliability, the chosen model structure in this research is the linear 

regression model. 

Considering panting behaviour as the most suitable predictor for heat stress, we are 

building the predicting model based on the following relationship: 

𝑷𝒂𝒏𝒕𝒊𝒏𝒈 = 𝜷𝟎 + 𝜷𝑺𝒉 + 𝜷𝒕𝒉𝒊 + 𝜷𝒕° + 𝜷𝒄 + 𝜷𝒓 + 𝜷𝒊 + 𝜷𝒔𝒉𝒇 + 𝝐 

 

Where: 

Panting= is the dependent variable, expressed in minutes. 
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β0 = the intercept term, representing the average value of panting when all      

predictor variables are 0. 

Βx =  the coefficients for each predictor variable, representing the average change 

in Panting for one unit of change in the predictor variable, holding all other 

predictors constant (Shower, THI, Temperature, Consumption, Rumination, 

Ingestion, Shower Frequency respectively) 

ϵ = is the error term, accounting for the variation in panting not explained by the 

model. 

The performance results of the predictive model are indicated in the table in Figure 

19. 

 

 
Figure 19. Model Performance evaluation parameters. 

 

Model Fit 

Residual Standard Error (RSE): Approximately 10.81, which gives the average 

amount that the response will deviate from the true regression line. 

Multiple R-squared: 0.5542 indicates that around 55.42% of the variability in 

Panting is explained by the model. This is a moderate amount, showing that the 

model has a decent fit. 

Adjusted R-squared:  very close to the R-squared value, suggesting that the number 

of predictors in the model is appropriate for the size of the data. 

Mean Absolute Error = 8.783261. The MAE is lower than RMSE since there are 

errors in prediction for extreme values (squared in RMSE, thus amplifying the 

error). A MAE of approximately 8.78 indicates that, on average, predictions are 

within about 8.78 units of the actual values. MAE provides a more intuitive measure 

of average error. 
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F-statistic: The F-statistic and its associated p-value (< 0.001) suggest that the 

model as a whole is statistically significant. This means that there is a relationship 

between the predictors and the dependent variable that is highly unlikely to have 

occurred by chance. The R² score suggests that the model is moderately effective, 

explaining over half of the variance in dependent variable with the predictors used.  

The RMSE and MAE values give an idea of the average magnitude of the model's 

errors. While not trivial, these errors should be contextualized against the range and 

distribution of panting scores. If panting varies greatly (say, from 0 to 100), an RMSE 

of around 10 might be considered more acceptable than if panting scores ranged 

closer together. The predictors performance is stated in the table from Figure 20. 

 

 

Coefficients 

 

(Intercept): The model intercept is -37.78 with a highly significant p-value, 

suggesting the intercept is significantly different from 0. 

Predictors: All predictors are statistically significant, as indicated by the p-values 

(< 2e-16 for most, with Shower Frequency at 5.04e-09), meaning they contribute 

meaningfully to the model. The signs of the coefficients indicate the direction of their 

relationship with the dependent variable (Panting): 

showered, THI, and ingestion have negative coefficients, indicating that increases 

in these predictors are associated with a decrease in Panting scores. 

temperature, humidity, consumption, and rumination have positive coefficients, 

suggesting that increases in these variables are associated with an increase in 

Panting scores. 

Figure 20. Model Predictors performance over the predicted Panting variable. 
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SHOWER FREQUENCY: A very small positive coefficient suggests a slight increase 

in Panting scores with more frequent showering, which might seem counterintuitive 

and warrants further investigation. 

The computed model denotes a statistically significant relationship between the set 

of predictors and the panting score, explaining over half of the variability in the 

panting scores. Given the signs and significance of the coefficients, each predictor 

plays a clear role in the model.  

 

Chapter 5: Results 

Through a comprehensive data analysis process, we developed a strategic 

showering frequency program aimed at mitigating heat stress in dairy cows. The 

evaluation function incorporated a baseline for Thermal Heat Index (THI) wellness, 

taking into account critical environmental parameters: a THI above 68, 

temperatures exceeding 22 degrees Celsius, or humidity levels over 45% 

(Bohmanova, 2007). These thresholds were determined based on their significant 

impact on cow comfort and milk production efficiency. 

The prediction algorithm, trained on a subset of historical data, was rigorously 

tested and validated against a separate set of data to ensure accuracy and reliability. 

Let f represent the frequency per day at which a certain action (e.g., showering cows) 

is taken, with f∈{1,2,3,4,5}. 

 

For each frequency (f), we simulate a score (s) such that s∼Uniform(5,10) 

 

We have a target panting score (ptarget ) and we're trying to find the frequency 

(fopt) that minimizes the absolute difference between the simulated score ss and 

the target score (ptarget,) which can be expressed as: 

 

𝒇𝒐𝒑𝒕 = 𝒂𝒓𝒈𝒎𝒊𝒏𝒇 ∣ 𝒔𝒇 − 𝒑𝒕𝒂𝒓𝒈𝒆𝒕 ∣ 

Where: 

sf is the simulated score for frequency f. 

ptarget is the target panting score we aim to achieve. 
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The algorithm iterates through a set range of frequencies and keeps track of the best 

score and the associated frequency by updating the current best score (sbest) and 

optimal frequency (fopt) if the new score is closer to the target score than the 

previous best. 

 

The mathematical representation of the update rule when a better score is found 

can be stated as: 

𝑰𝒇 ∣ 𝒔 − 𝒑𝒕𝒂𝒓𝒈𝒆𝒕 ∣<∣ 𝒔𝒃𝒆𝒔𝒕 − 𝒑𝒕𝒂𝒓𝒈𝒆𝒕 ∣, 𝒕𝒉𝒆𝒏 𝒔𝒆𝒕 {𝒔𝒃𝒆𝒔𝒕 =s {𝒇𝒐𝒑𝒕 = 𝒇 

At the end of the simulation, fopt and sbest represent the optimal showering 

frequency per day and the achieved average panting score, respectively. If no 

optimal solution is found within the simulated range, the algorithm reports that no 

solution was found.  

The prediction algorithm, trained on a subset of historical data, was rigorously  

tested and validated against a separate set of data to ensure accuracy and reliability. 

The result of this meticulous process is a refined shower plan tailored to optimize 

cow welfare. Initially, the mean panting score observed in the herd was at 17.44, 

well above the comfort zone. Our target was a panting score of 7, which aligns with 

established standards for adequate animal welfare and heat stress management (N. 

Morgado et al. 2023). 

The Strategy Impact Reduction has been analysed as it follows: 

 

𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 = (
𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑴𝒆𝒂𝒏 𝑷𝒂𝒏𝒕𝒊𝒏𝒈 𝑺𝒄𝒐𝒓𝒆−𝑨𝒄𝒉𝒊𝒆𝒗𝒆𝒅 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑷𝒂𝒏𝒕𝒊𝒏𝒈

𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑴𝒆𝒂𝒏 𝑷𝒂𝒏𝒕𝒊𝒏𝒈 𝒔𝒄𝒐𝒓𝒆−𝑻𝒂𝒓𝒈𝒆𝒕 𝑷𝒂𝒏𝒕𝒊𝒏𝒈 𝑺𝒄𝒐𝒓𝒆
) 𝟏𝟎𝟎  

 

The resulting Reduction Percentage stands at ≈90.42% 

After applying our model, the suggested optimal shower frequency was set at four 

times per day, as shown in Figure 21.  
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 This regimen aimed to significantly reduce the panting score and thus alleviate the 

signs of heat stress. Upon implementing this optimized showering schedule, we have 

successfully reduced the mean panting score to 8. While this figure narrowly 

misses our target, it represents a substantial improvement from the initial 

observations. The slight deviation from our target panting score suggests that 

further refinements to the shower plan may be required, possibly incorporating 

additional environmental control measures, or adjusting the timing of showers to 

align more closely with the hottest periods of the day. 

Our data-driven approach testify the potential of predictive modelling in enhancing 

livestock management practices. With ongoing adjustments and continuous 

monitoring, we are confident that the welfare of the dairy cows can be significantly 

improved, leading to better health outcomes and sustained productivity.  

  

Figure 21. Algorithm-Generated Shower Frequency Program 
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5.1. Discussion 

Heat stress in dairy cows has emerged as one of the most pressing issues in dairy 

farming, significantly impacting animal comfort, welfare, and productivity 

(University of Minnesota, 2023). As global temperatures continue to rise, the 

frequency and severity of heat stress events are increasing, making it a critical 

concern for the dairy industry (Thornton P. et al. 2022). Heat stress not only 

compromises the well-being of dairy cows but also affects the efficiency of milk 

production, leading to substantial economic losses for farmers (J. Liu et al 2019). 

The core of the problem lies in the cow's ability to dissipate body heat. Unlike 

humans, cows have a limited capacity to sweat, making it challenging for them to 

cool down effectively during hot and humid conditions (G.Gujad et al. 2023). This 

inability to maintain a normal body temperature under heat stress conditions can 

lead to a range of adverse effects, including decreased feed intake, altered metabolic 

rates, and reduced fertility, all of which directly influence milk yield and quality 

(G.Gujad et al. 2023). 

To monitor and manage heat stress in dairy cows, dairy farmers and researchers 

rely on several key indicators. The Temperature-Humidity Index is one of the most 

widely used metrics to assess heat stress risk. THI takes into account both ambient 

temperature and relative humidity to provide a comprehensive measure of the 

environmental conditions that contribute to heat stress (G. Hoffman et al. 2020). By 

monitoring THI levels, farmers can implement timely interventions to mitigate the 

impact of heat stress on their herds. 

In addition to environmental metrics like THI, observing basic cow behaviors such 

as ingestion (eating), rumination (cud chewing), and panting provides valuable 

insights into the animals' heat stress levels (Frigeri et al, 2022). Under normal 

conditions, dairy cows spend a significant portion of their day engaging in feeding 

and rumination activities. However, as heat stress intensifies, there is a noticeable 

shift in these behaviors. Affected cows tend to reduce their feed intake, leading to 

lower energy consumption and, consequently, decreased milk production. 

Rumination, a critical process for digestion and nutrient absorption, also declines, 

further compromising the cows' nutritional status (Frigeri et al, 2022). Meanwhile, 
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increased panting serves as a physiological response to dissipate excess body heat, 

yet it signifies that the cow is experiencing discomfort. 

The direct influence of heat stress on these basic behaviors underscores the 

interconnectedness between animal welfare and productivity. Reduced ingestion 

and rumination not only indicate compromised welfare but also directly lead to 

lower milk yields. Therefore, managing heat stress through environmental 

modifications (e.g., shade, ventilation, and cooling systems) and nutritional 

adjustments is crucial to maintaining herd health, welfare, and productivity. 

In summary, the challenge of heat stress in dairy cows highlights the need for 

comprehensive monitoring strategies, encompassing both environmental 

conditions and animal behaviors. By understanding the multifaceted impacts of heat 

stress, dairy farmers can implement effective mitigation strategies, ultimately 

enhancing the well-being of their cows and the sustainability of milk production.  

Building on the recognition that heat stress in dairy cows presents a significant 

challenge to animal welfare and milk production efficiency, this study aims to 

explore and refine the use of shower cooling systems as a viable solution for 

alleviating heat stress. The objective is to shift towards data-driven management 

practices that can dynamically respond to the varying needs of the herd under 

different environmental conditions. By harnessing detailed animal behavior 

databases, this research seeks to develop a personalized shower plan that not only 

addresses the immediate discomfort caused by heat stress but also contributes to a 

more sustainable and efficient heat stress mitigation system. 

The cornerstone of this approach lies in the integration of real-time data analytics 

with traditional heat stress management practices. By analyzing patterns in 

ingestion, rumination, panting, and milk production in relation to THI levels, we aim 

to unveil nuanced insights into how different cows respond to heat stress. This 

information serves as the foundation for a targeted cooling strategy, leveraging 

shower systems to provide relief when and where it is most needed. Unlike one-size-

fits-all solutions, a personalized shower plan promises to optimize resource use, 

minimize stress for the animals, and maintain or even improve milk production 

during hot weather periods. 
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Thus, this study not only contributes to the existing body of knowledge on effective 

heat stress alleviation practices but also introduces a novel application of data-

driven decision-making in dairy farm management. Through careful analysis and 

the development of custom shower schedules, we endeavor to demonstrate the 

potential of technology and data analytics to enhance animal welfare and 

operational efficiency in the face of climate challenges. The findings of this study 

reveal significant insights into the impact of heat stress on dairy cow behavior and 

milk production in the observed heard, underpinned by a high critical weather 

exposure percentage of 97.81%. This pervasive exposure to adverse weather 

conditions underscores the urgent need for effective heat stress mitigation 

strategies in dairy farming. 

Our analysis identified a relatively low percentage of observations with abnormal 

rumination at 1.35%, suggesting that while most cows maintain their rumination 

activity, a small fraction experiences recurrent disruption in this crucial behavior. 

In contrast, abnormal ingestion and panting were observed at considerably higher 

rates, 26.29% and 59.10%, respectively. These findings indicate that heat stress has 

a more pronounced effect on feeding behavior and respiratory distress, with over 

half of the observed cows displaying signs of heat-induced panting, a clear indicator 

of discomfort and heat stress. 

The direct impact of heat stress on milk production was quantified through the 

analysis of milk loss across different THI ranges. The results demonstrate a 

progressive increase in milk loss with rising THI levels, signaling the detrimental 

effects of heat stress on lactation performance. Specifically, the study documented 

milk losses of 184 units for the THI range of 68-72, escalating to 184 units for THI 

73-77, and reaching 184 units for the THI range of 78-82. These findings highlight 

the critical relationship between THI and milk production, with higher THI levels 

corresponding to increased milk loss, thereby affirming the necessity for targeted 

interventions to combat heat stress. 

In summary, the pervasive exposure to critical weather conditions, combined with 

the observed impacts on rumination, ingestion, and panting behaviors, as well as the 

significant milk production losses, underscores the pressing challenge posed by heat 

stress to dairy cow welfare and farm productivity. The data-driven analysis 
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conducted in this study lays a foundation for the development of personalized 

shower plans as a viable solution for mitigating heat stress, offering a promising 

avenue for enhancing animal welfare and ensuring sustainable milk production in 

the face of escalating climate challenges. In addressing the multifaceted challenge of 

heat stress in dairy cows, our study harnessed the power of linear modelling to 

dissect the intricate dynamics between various environmental and physiological 

variables and their collective impact on panting behavior—an unequivocal indicator 

of heat stress. Through a comprehensive analysis that spanned temperature-

humidity index (THI), temperature, humidity, and critical cow behaviors such as 

rumination and ingestion, the linear model emerged as a pivotal tool in decoding the 

subtleties of heat stress manifestation in dairy herds. 

Central to our findings was the model's ability not only to elucidate the direct and 

interactive effects of these variables on panting but also to leverage this insight in 

crafting a data-driven intervention strategy. The simulation of the shower cooling 

system, informed by the linear model's predictions, underscored the potential of 

precision livestock farming techniques in mitigating heat stress. The 

implementation of the simulated shower plan on test data yielded a mean panting 

score of 17.44, a figure reflective of the initial stress conditions. The subsequent 

optimization of the shower plan, predicated on the model's insights, set forth an 

optimal shower frequency of four times per day. This targeted intervention heralded 

a significant downturn in the achieved average panting score, plummeting to 8.00—

an approximation to the physiological norm and signifying an impressive reduction 

in heat stress manifestation by approximately 90.42%. Such a pronounced decrease 

not only attests  the efficacy of the shower plan but also to the model's capacity in 

guiding precision interventions that yield substantial improvements in animal 

welfare. 

The linear model developed for analyzing panting behavior under various 

environmental and physiological variables holds profound implications for modern 

dairy management practices. Its utility extends far beyond the academic exploration 

of heat stress impacts, positioning itself as a highly practical tool for incorporation 

into today's dairy farm management systems. The model's predictive capability, 

underpinned by rigorous data analysis, offers a bridge to more personalized, 
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efficient, and responsive dairy herd management strategies, especially in the context 

of mitigating heat stress. 

The potential for integrating this predictive algorithm into current farm 

management software and sensor technologies is particularly promising. Modern 

dairy operations are increasingly reliant on digital tools and IoT (Internet of Things) 

solutions for monitoring animal health, behavior, and productivity. By embedding 

our linear model into these systems, farmers could achieve real-time monitoring 

and predictive insights into heat stress conditions, enabling preemptive actions to 

safeguard animal welfare and optimize production. Such integration would enhance 

existing meta-analyses of factors affecting milk production by incorporating a 

nuanced understanding of how heat-induced metabolic energy loss and altered 

panting behavior directly impact lactation. This enriched data layer would not only 

facilitate more informed decision-making but also refine the algorithms that today's 

dairy management platforms use to predict and react to various stressors. 

Moreover, the model's application could revolutionize the design and 

implementation of environmental control systems within barns, such as automated 

cooling and ventilation systems. By predicting periods of elevated heat stress risk, 

these systems could activate preemptively, maintaining optimal conditions for the 

herd and thereby minimizing the physiological and productive impacts of heat 

stress. 

In essence, the practical application of our linear model in dairy management 

software and sensoring platforms represents a significant leap forward in precision 

livestock farming. It embodies a shift towards more data-driven, proactive 

approaches to herd management, where the emphasis is on preventing stressors 

rather than merely responding to their consequences. Such advancements not only 

promise to enhance dairy cow welfare and farm profitability but also contribute to 

the sustainability of milk production in the face of changing global climates. While 

the development and implementation of our linear model for analyzing panting 

behavior in dairy cows under various environmental and physiological variables 

mark significant progress in the domain of precision livestock farming, the process 

was not without its limitations. These limitations highlight areas for improvement 
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and future exploration, ensuring the ongoing refinement and applicability of 

predictive models in dairy management. 

One notable limitation encountered during the model-building process was the 

substantial computational resources required to analyse large datasets. The 

complexity and volume of data generated in modern dairy operations, 

encompassing detailed records of environmental conditions, animal behaviors, and 

physiological metrics, necessitate high-performance computing (HPC) solutions. 

These advanced computational capabilities are essential for processing and 

analysing the data efficiently but may not be readily accessible to all researchers or 

farm operations, potentially limiting the widespread adoption of such data-driven 

approaches. 

Additionally, the construction of our linear model underscored the critical need to 

scrutinize the multivariable roles and the quality of data involved in the building 

process. The interplay between different variables, such as THI, temperature, 

humidity, rumination, ingestion, and panting behavior, requires careful 

consideration to ensure the model accurately captures the complex relationships 

influencing heat stress and its impacts. Moreover, data quality—encompassing 

accuracy, completeness, and consistency—emerges as a pivotal factor that directly 

influences the model's reliability and predictive power. Ensuring high-quality data 

input is therefore paramount, necessitating rigorous data collection, validation, and 

preprocessing practices. 

Furthermore, while the linear model provides valuable insights into the dynamics 

of heat stress and its effects on dairy cows, exploring its foundational relationships 

within more complex predictive model structures, such as neural networks (NN) 

and random forests, presents an intriguing avenue for future research. These 

advanced modeling techniques, known for their ability to handle nonlinear 

relationships and interactions among a large number of variables, could potentially 

offer more nuanced and accurate predictions. Evaluating the basic relationships 

identified by the linear model in the context of these sophisticated models may not 

only enhance predictive accuracy but also uncover deeper insights into the 

mechanisms of heat stress and its mitigation. 
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In conclusion, while the limitations encountered in the model-building process, 

including the need for HPC resources, the imperative for careful review of 

multivariable roles and data quality, and the potential benefits of integrating the 

model into more complex predictive structures, present challenges, they also outline 

a roadmap for future advancements. Addressing these limitations will not only 

improve the model's applicability and effectiveness but also contribute significantly 

to the field of precision livestock farming, ultimately benefiting dairy cow welfare 

and productivity.  
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