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Introduction 

For decades, agro-ecological zonations (AEZs) have been used for a wide range of purposes: from land use 

planning to the upscaling of crop models, from the estimation of future agricultural land to calculation of 

yield gaps. The increasing availability of climatic and soil global datasets has led to the creation of several 

AEZs, built on climatic and pedological parameters. At the same time, researchers have become more 

aware of the importance of land cover, either described in terms of general categories or with the detailed 

vegetation type, suggesting that it may be an important element in a zonation. Indeed, especially in the 

context of agro-ecosystems, the land cover and the agronomic practices, beside soil and climate features, 

can influence several processes, for instance nutrient cycles. 

The case of N pollution deriving from agricultural activities is a perfect example. It is known that climatic 

variables, such as the amount of precipitations and their distribution across the season, can influence 

processes like leaching; the same is valid for soil properties, such as texture and porosity. In studying the N 

cycle or defining fertilizer recommendations, AEZs based on pedo-climatic parameters have often been 

used. Institutions in charge of defining Nitrate Vulnerable Zones for the Nitrate Directive use this system, as 

well. The quantity of nitrogen that enters the agro-ecosystem is mainly determined by the farmer, who 

uses different doses of fertilizer according to the crop cultivated and the customary agronomic practices. 

Therefore, it is hard to think of an agro-ecological zonation meant for the monitoring and the reduction of 

N pollution and missing crop type information.  

In the process of building an agro-ecological zonation, the choice of the source of data is as important as 

the data itself. As an example, climatic conditions can change fast in time, so it is essential to rely on a 

source able to provide always up-to-date information. Satellite remote sensing qualifies as a relevant 

source of data, hence it has been used for the provision of climatic data for all the existing zonations. Land 

use and land cover are partly dependent on climate, thus they are expected to change more or less as 

rapidly. Given the fact that regular field campaigns would be too expensive, both for developed and 

developing countries, satellite remote sensing has shown great potential also for the contribution of this 

type of information. Research in the direction of agricultural applications, and more specifically towards 

crop type mapping, has also been encouraged by the recent development of satellite sensors with spatial 

resolutions of 10 to 30 meters.  

 

The present research will explore the potential of satellite remote sensing for the provision of information 

relative to crops, as an auxiliary resource for developing agro-ecological zonations. The techniques used to 

produce the crop type map will be discussed, in the perspective of classifying at least the most common 
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crops on the territory and distinguishing them from minor crops. Finally, the usefulness of integrating the 

crop type map into an AEZ will be discussed. The case study is represented by the Muzza area, located in 

the North of Italy, where N pollution is currently controlled by using agro-ecological zones based on 

climatic and pedological parameters. 
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1. State of the art 

1.1 Agro-ecological zonations 

1.1.1 Introduction to agro-ecological zonations 

Agro-ecological zones (AEZs), as they were conceived by the FAO, were born for the purpose of evaluating 

land suitability for cultivation by taking into account at the same time climate and soil parameters, so as to 

describe the suitability of land for cultivation. 

The first official document issued by FAO regarding AEZs was the Report on the Agro-ecological Zones 

Projects, published on the [FAO] World Soil Resources Report, 48, in 1978: here AEZs are precisely defined 

as «zones which have similar combinations of climate and soil characteristics, and similar physical 

potentials for agricultural production» (FAO, 1996). The same acronym (AEZ) is used to refer to the 

methodology used to divide an area into agro-ecological zones, defined as the «division of an area of land 

into smaller units, which have similar characteristics related to land suitability, potential production and 

environmental impact» (FAO, 1996). 

AEZs were conceived as a tool for rural land-use planning and for land resource appraisal (FAO, 1996), but 

through time they have been used for other purposes, including integrated assessments (Fischer, Shah, 

Tubiello, & van Velhuizen, 2005) and up-scaling of crop models (Van Wart et al., 2013). Indeed, the term 

agro-ecological zoning has been associated with a wide range of different activities that are often related 

yet quite different in scope and objectives (Fischer, van Velthuizen, Shah, & Nachtergaele, 2002). This also 

implies that a single product can prove useful for a wide range of applications.  For instance, the study area 

of this research could make use of an agro-ecological zonation to define the environmental impact of the 

agricultural sector. 

 

1.1.2 The meaning of agro-ecological zonations in the context of agro-ecology 

Agro-ecology has been defined as «the science of the relationships of organisms in an environment 

purposely transformed by man for crop or livestock production» (Martin & Sauerborn, 2013). The 

agroecosystem can be considered as «the environment of the crop» (Martin & Sauerborn, 2013). Since the 

crop (or the livestock) is the central object of the agroecosystem, it is easy to understand why the broadest 

concept of agroecosystem takes into account any factor influencing the production, be it biotic or abiotic, 

physical or human. (Martin & Sauerborn, 2013) use the scheme in Fig. 1 to represent the levels of factors 

influencing crop production. 
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Agro-ecological zonations are not meant to 

represent agroecosystems; however, the 

principle of growing levels illustrated above 

has been used to create agro-ecological zones 

as well. For instance, C. A. Mücher et al. 

(2003), when listing all the components that 

characterise an environment or a landscape, 

use a specific functional hierarchy (Fig. 2).  

 

Fig. 1 – The agroecosystem as the environment of the 

crop (Martin & Sauerborn, 2013) 

 

In addition to the biotic and abiotic factors, also human interference is considered, since it can affect 

components on the various hierarchical levels (e.g. geomorphology, soils and vegetation), thus shaping the 

environment and the landscape (C. A. Mücher et al., 2003). 

 

 

Fig. 2 – Landscape character as a functional 

hierarchy of abiotic, biotic and cultural 

phenomena (C. A. Mücher et al., 2003) 

 

 

 

Keeping in mind this hierarchical list of components, the spatial limits of an agroecosystem and of an agro-

ecological zone are somewhat arbitrary. These are determined by the scale and the number of factors that 

the researcher chooses. A complete analysis of the agricultural system requires the inclusion of all the 

parameters, from abiotic to cultural (Fischer et al., 2005); in other studies only abiotic factors are 

considered; finally, some cases take into account the abiotic and land cover factors. As we will see in the 

next paragraph, different zonations were created to respond to different purposes. 
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1.1.3 Existing agro-ecological zonations 

In time, researchers have developed the concept of AEZ from FAO, creating zonations with different inputs, 

results and resolutions. van Wart et al. (2013) have provided a useful review of the climatic part of the 

models. 

The most used agro-ecological zonations are the following (van Wart et al., 2013): 

- GAEZ (Global Agro-Ecological Zones): by FAO\IIASA (Fischer et al., 2012); 

- SAGE zonation scheme (Center for Sustainability and the Global Environment) (Licker et al., 2010); 

- GYGA-ED (Global Yield Gap Atlas Extrapolation Domain) (Atlas, n.d.); 

- GAES (Global Agro-Environmental Stratification) (Mücher et al., 2016); 

- modifications of GAEZ or SAGE schemes: e.g. HCAEZ (HarvestChoice AEZ); 

- GEnS (Global Environmental Stratification) (Metzger et al., 2012). 

The HCAEZ and the GEnS are Climatic Zonations (CZs) rather than AEZs; however, they are included in this 

brief review because they have been used for research in agriculture (Zomer et al., 2014).  

Following, in Tab. 1, a brief summary of the variables used in the different methods: 

 

AEZ scheme Climate 

variables1 

 

Soil variables Other variables Spatial 

resolution 

Notes 

GAEZ v3.0 

 

Wind run and 

wind speed; wet 

day frequency; 

sunshine 

duration; day-

time and night-

time 

temperatures; 

reference 

evapotranspiratio

n; maximum 

evapotranspiratio

n; actual 

evapotranspiratio

n; snow balance 

calculation 

Daily soil moisture 

balance; soil phases; 

soil drainage;  

soil texture; organic 

carbon content; soil 

acidity (pH); cation 

exchange capacity 

of clay; cation 

exchange capacity 

of soil; base 

saturation; total 

exchangeable 

bases; calcium 

carbonate; calcium 

sulphate; exchange 

sodium percentage; 

electrical 

conductivity 

Crop-related: length 

of growing period; 

multiple cropping 

zones for rain-fed 

production; 

equivalent length of 

the growing period; 

net primary 

productivity (NPP) 

Other: land cover; 

land utilization type; 

protected area; 

administrative areas 

10 km It does not provide a 

stratification of data, but 

single layers of 

information. 

It is crop-specific. 

SAGE growing degree 

days (GDD; Tmean–

crop-specific base 

temperature) and 

soil moisture 

soil pH; soil organic 

carbon 

 10 km  Crop-specific 

                                                           
1 partially from (van Ittersum et al., 2013) 
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index 

GYGA-ED daily max/min 

temperature, 

rainfall, humidity 

texture; depth of 

rooting zone; slope 

proportion of the 

harvested area; 

cropping intensity; 

some aspects of 

management (e.g. 

sowing date and 

cultivar maturity); 

water regime 

 

10 km  

GAES  annual mean 

temperature, 

annual total 

precipitation, 

mean cloud 

fraction over the 

growing season, 

standard 

deviation of the 

cloud fraction 

over the growing 

season 

 

DTM mean altitude, 

DTM mean slope 

% of irrigated land, 

Gross Primary 

Production (GPP), 

decade when max 

biomass is reached in 

growing season 1 

and 2, number of 

growing cycles, 

number of crop 

types, field size 

 

1 km It is an extended version of 

GYGA-ED. 

HCAEZ length of growing 

period, mean 

temperature, 

elevation 

 

  10 km Only climatic  

GEnS GDD with base 

temperature of 

0°C, an aridity 

index, 

evapotranspiratio

n seasonality, 

temperature 

seasonality 

  1 km Intended for 

environmental monitoring 

in general, not specifically 

for agriculture. 

Only climatic. 

 

Tab. 1 – Main AEZ schemes and the variables on which they are based 

The methods illustrated differ in several crucial points: 

§ variables used: they can be different with regard to the crop, the climate, the soil and other aspects 

investigated; they can be a direct (e.g. min\max daily temperature) or indirect (e.g. GDD) measure of 

the factor of interest; 

§ source of the variables used: the variables can derived from existing non-spatial datasets (e.g.  global 

census data used in the SAGE), derived from other variables (e.g. potential number of crops derived 

from the LGP in the GAEZ, or the Aridity Index used in the GEnS) or remotely sensed. The latter is the 

case of most climate data (e.g. temperature and cloud cover), but in zonations like the GAES also soil 

and land cover variables are obtained from EO.  

§ crop specificity: crop-specific models are more accurate in predicting crop productivity, but they 

cannot be used for the estimation of crop production where rotations are applied; instead, non-crop 

specific models are less precise (they apply T=0°C as the base temperature in the calculation of GDD 
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for all crops), but they can be used also in case of crop rotations: this is a big advantage, since much 

of the world’s cropland produces more than one major food crop; 

§ terrestrial area considered: while some methods make calculations on all the arable land, others take 

into account only the actual harvested area of major food crops; 

§ spatial resolution: SAGE, GYGA-ED, GAEZ v3.0 use 10 km grid cells; the highest resolution data is 

provided by GAES (1kmx1km); 

§ zone size: this parameter is of extreme importance, since it influences directly the variability within 

the zones. It is essential to optimise the trade-off between achieving climatic homogeneity within 

zones and minimising the number of zones necessary to capture large portions of harvested area of 

target crop (van Wart et al., 2013).This problem is specifically addressed by GAES, which was built by 

performing a multi-resolution segmentation and which presents 4 hierarchical spatial levels.  

 

1.1.4 Strengths and weaknesses of existing AEZs 

Agro-ecological zonations can be used in the framework of different applications; therefore, the evaluation 

of the best scheme to adopt should be done according to the final objective. 

The main characteristics to be considered are: 

- variables used: several studies have remarked the importance of having a complete set of 

information about soil and terrain conditions (D. H. White et al., 2001); moreover, as explained 

earlier, it would be advisable to include in the zonation not only biophysical variables, but also 

information on land cover and on the socio-economic context. When the inclusion of this information 

does not match the final objective of the zonations, it is still advisable to use it as a descriptor.  

- crop specificity: the applications of crop-specific zonations are limited to studies focused on one 

single crop, excluding other types of research (e.g. on yield gaps, yield predictions, integrated 

assessments); on the other hand, non-crop-specific zonations can be used for a wider range of 

purposes. 

- terrestrial area considered: studies intended for predictions need to be based on the total arable 

land, while researches meant to assess the state of the art require information on the amount of 

land which is actually cropped; an agro-ecological zonation including both types of information could 

be used for both purposes; 

- spatial resolution: the quality of the spatial resolution depends on the object of the study and on its 

physical dimension. A spatial resolution of 1 km or 10 km, such as the ones of the AEZs reviewed, is 

suitable for studies at the national, continental and global scale; however, a higher degree of spatial 

resolution is needed for monitoring at the sub-national, local scale. 



 

11 

 

- zone size: as for spatial resolution, the optimal zone size depends on the scale; again, the zone size of 

all the zonations reviewed may be too coarse for studies at the national and sub-national levels, since 

they may not capture the heterogeneity of the studied area; indeed, zone size and within-zone 

variability are connected (Van Wart et al., 2013). For instance, (van Wart, Kersebaum, Peng, Milner, 

& Cassman, 2013) in their study conclude that GAZE and HCAEZ are built on zones with a high within-

zone heterogeneity, making it impossible to estimate accurately yield gaps. Only the multi-resolution 

system of the GAES deals specifically with this issue, letting the user choose the most suitable scale, 

even though the highest resolution offered may not be enough for local studies. 

- Presence of land use, land cover or crop type information: when studying phenomena that depend or 

influence the land cover or the crop type, making this information available within the zonation is 

very valuable. When referring to nutrient cycles, many works can be found that study N dynamics by 

focusing on sample fields in each zone (Masvaya et al., 2010, Kaizzi, Ssali, & Vlek, 2006). They couple 

territory-level data with field-level data, study the chosen phenomenon at the field-level and then 

generalize the results and the recommendations. In this way, they miss a global view over the 

territory considered, be it a region or a country, which is particularly important when dealing with 

processes that occur at the regional scale. To contextualize results and recommendations for farm 

management, other studies employ statistical information about crop types and\or cropping systems 

and integrate it into agro-ecological zones. The information can be used in two ways: 

§ As an input variable: for instance, (van Beek et al., 2016) use zones in Ethiopia (woredas) that 

are defined on the basis of agro-ecological information, soil type and farming system type. The 

zones are used to determine the inputs and outputs of nutrient balances that obviously can 

change considerably according to the farming system. 

§ As a descriptor layer: the GAES zonation system is based on 13 input variables; the number of 

crop types is used as an input variable, but the dominant crop type is given as a descriptor of 

the stratification. This means that the dominant crop type (land cover) does not influence the 

clustering of the zones, but simply contributes information about the zones that were built 

using other variables.  

Among the global AEZs reviewed, only the GAES takes into account land cover information. Hence, 

the other zonations may be considered only partially useful when studying regional scale-processes. 

In conclusion, the pros and cons of each zonation scheme should be evaluated with regard to the specific 

application. When referring to the monitoring of environmental pollution derived from agricultural 

activities, wind speed may be less significant than the amount and temporal distribution of precipitations; 

the depth of the rooting zone may contribute less information than the soil texture; while farm 
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management information should be well-described, with variables like the number and type of crops or the 

use of irrigation, to be surveyed regularly.  

 

1.2 Remote sensing 

1.2.1 Basics of remote sensing  

The term remote sensing has first been used in the 1960s to describe any means of observing the Earth 

from afar; it was initially referred to the acquisition of aerial photography, but with time it has been 

associated to the complete processing chain of remotely sensed products, from image acquisition to the 

dissemination of the final products (Chuvieco & Huete, 2010). In general, remote sensing can be defined as 

the acquisition of information about the state and condition of an object through sensors that are not in 

physical contact with it; the information is transmitted from the object to the sensors in the form of 

electromagnetic radiation (Chuvieco & Huete, 2010).  

The sensor is the tool that acquires remote sensing images. According to the nature of the electromagnetic 

radiation recorded, sensors can be divided into passive and active. The former record the electromagnetic 

radiation naturally emitted or reflected from the area of interest. The latter, instead, emit electromagnetic 

radiation and then record how much of it is reflected back. Many active sensors onboard satellites exist 

(ESA’s Sentinel1 is the most recent one), but the major part of space-based sensors is passive.  

Sensor quality is mainly described by its resolution. Resolution is defined as the sensor’s ability to 

discriminate information (Estes & Simonett, 1975), which is also the ability of the sensor to distinguish a 

specific object from other objects (Chuvieco & Huete, 2010). The discrimination of information is 

determined by the spatial detail, the number of spectral wavebands and their bandwidth, the spectral 

range covered, the temporal frequency of observation. Therefore, it is possible to distinguish the following 

types of resolution: 

-  Spatial resolution: it is a measure of the fineness of detail of an image (Khorram, Koch, van der Wiele, 

& Nelson, 2012). The definition of spatial resolution is linked to the Instantaneous Field Of View (IFOV), 

which is the angular section observed by the sensor, in radians, at a given moment in time; the spatial 

resolution is commonly defined as the size of the projected IFOV on the ground. The unit used to 

express spatial resolution is usually the pixel, which is the size of the minimum spatial unit of the 

image. Sensors with global coverage can have different spatial resolutions: from 0.65 m (IRS’s 

CasrtoSat-2C) to 10m (ESA’S Sentinel-2), from 250 m (e.g. NASDA’s ADEOS II) to 1 km (e.g. MODIS). 

Spatial resolution is one of the most important sensor characteristics, since it affects the level of detail 

achieved and the accuracy of the analysis: indeed, the smaller the size of the pixel, the smaller the 
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probability that the pixel will be a mix of multiple objects (“mixed pixel”), not easily distinguishable or 

classifiable (Chuvieco & Huete, 2010). However, the choice of an adequate spatial resolution depends 

mainly from the scale that has been chosen to study the given problem. There is not a unique 

definition of scale: (Levin, 1992) calls it the “window of perception”, the measuring tool through which 

a landscape (or any other object) may be viewed or perceived; (Wu & Li, 2009) define the observation 

scale in remote sensing as the measurement unit at which the data is measured or sampled, thus 

directly linking it to the concept of spatial resolution. Since different processes occur at different 

modeling or operational scales (Wu & Li, 2009), different scales reveal different patterns of reality 

(Marceau & Geoffrey, 1999). Typically, the larger the area covered, the smaller the level of detail 

(Chuvieco & Huete, 2010); which means, the larger the scale, the lower the spatial resolution. Another 

concept related to the one of spatial resolution yet different is the Minimum Mapping Unit (MMU), 

which is the smallest unit of information that can be included in a thematic map (Chuvieco & Huete, 

2010).  

- Spectral resolution: it is described by the spectral range of the sensor, the number of spectral bands 

and their bandwidth. It defines the sensor’s ability to detect wavelength differences between objects 

or areas of interest (Khorram et al., 2012). Considering spectral resolution, sensors can be divided into: 

panchromatic, with one broad spectral band; multispectral, with multiple medium-width spectral 

bands; and hyperspectral, with many narrow spectral bands, up to hundreds. For instance, the OLI 

sensor, belonging to Landsat8, has got 9 bands, with bandwidths from 0.02 to 0.18 µm; thus, it 

classifies as a multispectral sensor. The Hyperion sensor, belonging to EO-1, has got 242 bands, with 

bandwidths around 0.01 µm.  

- Radiometric resolution: it is the sensitivity of the sensor, i.e. its capacity to discriminate small 

variations in the recorded spectral radiance. In optical-electronic sensors, it refers specifically to the 

range of values coded by the sensor; most sensors code in 8 bits (256 digital levels per pixel) (Chuvieco 

& Huete, 2010).  

- Temporal resolution: it is the observation frequency, or revisiting period, of the sensor (Chuvieco & 

Huete, 2010). The temporal resolution of the sensors usually change with their objective, with 

metereological satellites having short revisiting periods (even 15-30 minutes) and satellites for other 

applications longer ones (e.g. 16 days for Landsat8, 5 days for Sentinel-2, 1-2 days for MODIS).  

It should be remarked that there are not absolute quality standards for sensors, but rather that all the 

resolutions should be considered according to one’s final objective (Chuvieco & Huete, 2010). For instance, 

fire detection may require higher temporal resolution and smaller spatial resolution than soil mapping. In 

the light of the specificity of each objective, different countries have designed missions with special 

focuses: climate, water, vegetation and so on. Among the sensors destined to high-resolution vegetation 



 

14 

 

monitoring, it is important to mention the family of satellites called Landsat, managed by NASA (US 

National Aeronautics and Space Administration), and the family of the Sentinels, managed by ESA 

(European Space Agency).  

 

In 1972, the U.S. Geological Survey (USGS) and NASA launched the first satellite of the Landsat project, 

which is one part of the bigger USGS Land Remote Sensing (LRS) program. The main recipients of Landsat 

products are people working in agriculture, geology, forestry, regional planning, education, mapping and 

global change research (USGS, 2016b). The last satellite to be launched in the framework of the mission 

was Landsat8, which is still operative. The mission objective is to provide images of all landmass and near-

coastal areas on the Earth (USGS, 2016a). The satellite carries two passive, multispectral sensors: the 

Operational Land Manager (OLI) and the TIRS (Thermal Infrared SensorS). The OLI consists of 9 spectral 

bands, of which bands 2 to 8 are the most useful for vegetation studies; the TIRS present 2 spectral bands, 

which provide information about surface temperature (Tab. 2) (USGS, 2016c). 

 

 Band Wavelength 

(micrometers)  

Resolution  

(meters) 

OLI Band 1 – Ultra Blue (Coastal\Aerosol) 0.43-0.45 30 

Band 2 – Blue 0.45 - 0.51 30 

Band 3 – Green 0.53 - 0.59 30 

Band 4 – Red 0.64 - 0.67 30 

Band 5 – Near Infrared 0.85 - 0.88 30 

Band 6 – Shortwave Infrared (SWIR) 1 1.57 - 1.65 30 

Band 7 – Shortwave Infrared (SWIR) 2 2.11 - 2.29 30 

Band 8 – Panchromatic 0.50 - 0.68 15 

Band 9 – Cirrus 1.36 - 1.38 30 

TIRS Band 10 – Thermal Infrared (TIR) 1 10.60 - 11.19 100 * (30) 

Band 11 – Thermal Infrared (TIR) 2 11.50 - 12.51 100  * (30) 

Tab. 2 – Landsat8 spectral bands 

 

Since the mission has operated continuously for more than 40 years, the Landsat archive represents the 

longest collection of space-based moderate-resolution land remote sensing data.  

 

Following the latest advancements in remote sensing, ESA has scheduled the launch of 6 new satellites, 

called Sentinels. The objective of the new Earth observation programme is to provide information to 

improve the management of the environment, understand and mitigate the effect of climate change and 

ensure civil security (ESA, 2000). The first three satellites are already operative. Sentinel-2, launched in June 

2015, has been designed to work in continuity with Landsat and SPOT for some key land services (namely 

land monitoring, emergency management, security and climate change) (ESA, 2016b). The satellite has got 
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one passive, multispectral sensor, called MSI, which acquires information over 13 bands. The Sentinel-2 

mission was specifically design to monitor changes in the vegetation, thus the MSI has got spectral, spatial 

and temporal resolutions with a higher potential for vegetation monitoring in comparison to Landsat8: 

indeed, there are 3 bands (B5, B6, B7) in the “red edge” region (ESA, 2016a), which is notably sensitive to 

plant abiotic stress (Chuvieco & Huete, 2010). Moreover, the bandwidth of most of the bands of interest for 

vegetation monitoring is narrower (Fig. 3), thus 

identifying specific absorption features of 

vegetation; the revisit frequency of 5 days 

should ensure a reasonable percentage of 

cloud-free imagery (Whitcraft, Vermote, 

Becker-Reshef, & Justice, 2015); the spatial 

resolution of 10-20 m should be able to capture 

with a higher degree of detail the diverse 

farming systems found globally. 

 

 

 
Fig. 3 – Comparison of Landsat 7 and 8 bands with Sentinel-2 (NASA, 2016) 

 

The unprecedented combination of spectral, spatial and temporal resolution offered by Sentinel-2 

represents a major step forward compared to the previous multi-spectral missions (Drusch et al., 2012); 

this will hopefully stimulate the agribusiness sector (Cuca & Tramutoli, 2014), also thanks to its user-

oriented approach (Bontemps et al., 2015), while boosting research in remote sensing for agriculture. 

However, studies regarding the pre-Copernicus period will keep on relying on Landsat-8 data. 
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1.2.2 The application of remote sensing technologies for the characterization of agricultural systems 

It has been shown that agro-ecological zonations should also account for the characteristics of cropland 

and, where possible, of farm management. However, it is important to remark that monitoring and 

mapping agricultural systems require clearly defined concepts and objects (Begué et al, 2015). The object of 

any remotely sensed map can be the cropland, a cropping system or a farming system; these terms have 

been widely used in literature with different meanings, therefore we will here provide a clear definition, 

following the extensive review made by (Cochet, 2012) (Fig. 4) : a) cropland: the crop covering a given piece 

of land at a given time (e.g. maize, wheat, soy); b) cropping system: the agricultural practices and 

techniques used in a plot or group of plots, in terms of crops cultivated, crop associations, crop successions, 

level of intensification, according to a specific sequence and pedo-climatic conditions; c) farming system: a 

group of farms with the same physical resources and technology, in the same socio-economic context 

(Cochet, 2012). Bégué, Arvor, Lelong, Vintrou, & Simoes (2015) then take the next step by asking which 

“land maps” to monitor which “agricultural systems”? The authors answer this question by introducing the 

following concepts: 1) Land cover: it addresses the description of the land surface in terms of soils and 

vegetation layers, including natural vegetation, crops and human structures (Burley, 1961). The feature 

describing the land cover is cropland. 2) Land use: it refers to the purpose for which humans exploit the 

land cover, including land management techniques (Verburg, van de Steeg, Veldkamp, & Willemen, 2009). 

The described feature is the cropping system. 3) Land use systems: they can be defined as a coupled 

human-environment system; they describe how land, as an essential resource, is being used and managed 

(Bégué et al., 2015). They are described by the correspondent farming system.  

This distinction must be kept in mind when dealing with remote sensing of agricultural land: mapping the 

type of crop on the field and 

irrigated\non-irrigated crops not 

only respond to different 

objectives but require also 

different methods. This work will 

only refer to crop type mapping. 

 

Fig. 4 – The levels of an agricultural 

system 
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1.2.3 Crop mapping methods 

A wide range of methods has been tested to address the issue of crop type mapping. Crop mapping 

techniques may be classified on the basis of different criteria, among which time of delivery, classification 

metrics, approach.  Tab. 4 shows some crop mapping methods; it does not represent a complete review of 

the existing methodologies, but it includes the most common ones. 

Criterion Method Advantages Disadvantages References 
 

Time of delivery In season Provides early 
information. 

Lower accuracy 
than end-of-season 
products. 
 

(Villa, Stroppiana, 
Fontanelli, Azar, & 
Brivio, 2015) 
(Azar, Villa, 
Stroppiana, & 
Crema, 2016) 

End of season Higher accuracy than 
in-season products. 

Cannot deliver 
some of the 
information 
required by policy-
makers. 
 

(Jordi Inglada et 
al., 2015) 

Radiometry Optical Easy to understand 
and use. 
 

Does not work at 
all with cloud 
cover. 

(Jordi Inglada et 
al., 2015) 
(Valero et al., 2016) 
(Immitzer, Vuolo, & 
Atzberger, 2016) 

SAR 
  
 

Can provide 
information also 
when there is cloud 
cover. 
 

More difficult to 
understand and 
use. 

(Tso & Mather, 
1999) 

Optical+SAR Can provide 
information also 
when there is cloud 
cover. 
 

More difficult to 
understand and to 
use. 

(J Inglada, Vincent, 
Arias, & Marais-
Sicre, 2016) 
(Villa et al., 2015) 

Spectral 
resolution 

Multispectral 
 

Easier and faster to 
process. 

May not capture all 
the spectral 
features needed 
for specific studies. 
 

(Azar et al., 2016) 
(Jordi Inglada et 
al., 2015) 

Hyperspectral 
 

Contains more 
detailed information 
about specific 
absorbance peaks. 
 

Features overload. 
Long 
computational 
time. 
 

(Liu & Bo, 2015) 

Classification 
metrics 

Spectral features 
   

Vegetation 
Indices (VIs) 
 

Easy to compute. 
Allow feature 
reduction. 
Easy to interpret. 

May not be useful 
when studying 
many crops at the 
same time. 
Not directly linked 
to biophysical 
variables. 
 

(Azar et al., 2016) 

SAM High accuracy Does not perform 
well when there 
are mixed pixels. 
 

(Dennison, 
Roberts, & 
Peterson, 2007) 

SMA Can estimate the Difficult to (Bannari, Pacheco, 
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 vegetation fraction 
within mixed pixels. 
Can help in sub-pixel 
analysis, especially 
needed when 
dealing with low-
resolution data. 
 

transform into 
thematic 
information. 
There is a limitation 
to the number of 
endmembers that 
can be used. 
Intra- and inter-
species variability 
are difficult to 
manage. 

Staenz, McNairn, & 
Omari, 2006) 
(Roth, Dennison, & 
Roberts, 2012) 

Textural features 
 

Can capture a 
different type of 
information. 

Usually not enough 
to classify a high 
number of crops. 

(Balaguer, Ruiz, 
Hermosilla, & 
Recio, 2010) 
(J Inglada et al., 
2016) 

Spectral and textural features Increased 
classification 
accuracy. 

Possible features 
overload.  

(Murray, Lucieer, & 
Williams, 2010) 
(Rodriguez-
Galiano, Chica-
Olmo, Abarca-
Hernandez, 
Atkinson, & 
Jeganathan, 2012) 
(Reis & Taşdemir, 
2011) 
(Peña-Barragán, 
Ngugi, Plant, & Six, 
2011) 

Approach (1) Pixel-based Works well when the 
size of the studied 
object equals the 
pixel size.  

Salt-and-pepper 
effect. 

(Valero et al., 2016) 
 

Object-based Works well when the 
size of the studied 
object is bigger than 
then pixel size. 

Does not work well 
when the area 
studied is small 
(e.g. smallholder 
agriculture) or 
heterogeneous 
(e.g. 
intercropping). 
 

(B. Schultz et al., 
2015) 
(Li, Wang, Zhang, & 
Lu, 2015) 
(Immitzer et al., 
2016) 
(Schmidt, Pringle, 
Devadas, Denham, 
& Tindall, 2016) 
(Peña-Barragán et 
al., 2011) 

Approach (2) Single image Little load of data to 
analyse.  

Cannot distinguish 
among crops with 
similar spectral 
information. 

(Ali, 2002) 

Multi-temporal Allows the 
distinction of crops 
which have similar 
spectral information 
(e.g. barley and 
wheat). 
 

Requires 
knowledge of the 
crop calendar. 
May not give good 
results if little 
images are 
available, because 
of cloud cover.  
 

(Valero et al., 2016) 
(Pittman, Hansen, 
Becker-Reshef, 
Potapov, & Justice, 
2010) 
(Schmidt et al., 
2016) 

Tab. 4 – Some of the most common crop mapping methods 
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The several and diverse crop mapping methods listed above try to deal with different problems that arise 

when working from the local to the global scale; some of the most important issues that must be taken into 

account are the following: 

- Cloud cover: climatic conditions, especially over certain areas, make it difficult to obtain a series of 

cloud-free images over an extended period of time, which is needed when working with a multi-

temporal approach; in some regions, the highest cloud cover occurs during the critical period for crop 

identification (Whitcraft et al., 2015); 

- Intra-crop variability: the spectral response of any crop varies with the phenological stage, the health 

status, the climate and soil conditions, the agricultural practices (e.g. irrigation, fertilization); also the 

temporal response is quite variable, since it is determined by the crop calendar, which in turn is 

influenced by the climatic conditions of the season, the agricultural practices, the farmer’s decision; 

- Detection and classification of crops within some specific cropping systems: cropping systems with 

mixed cropping or intercropping produce pixels that are not pure and therefore not easy to classify; 

- Field size: in some regions of the world, the average field size is too small compared to the pixel size, 

generating again pixels that are not homogeneous (Jordi Inglada et al., 2015); 

- Other characteristics of the cropping or farming system: trees scattered in the fields generate shadows 

that modify in part the spectral response of the vegetation; 

- Amount of data to analyse: computational time represents crucial characteristics of the system 

producing the service, especially when dealing with in-season classifications; feature reduction 

techniques are not always a solution because they may not capture crop variability (e.g. selecting only 

some dates of a time series may exclude from the analysis crops with a late sowing). 

The issues mentioned represent a challenge to accurate crop type mapping systems and must be 

considered in relation to one’s final purpose when elaborating the processing chain, which is the sequence 

of steps applied to extract the required information from the imagery. In the following paragraphs we will 

discuss how certain methodologies deal with some of these problems. 

 

1.2.4 Vegetation Indices (VIs) 

Vegetation Indices (VIs) have been extensively used for vegetation studies (Haibo & Yanbo, 2013); they are 

most commonly calculated as band ratios or combinations. VIs try to capture and enhance spectral 

characteristics that belong to green vegetation only: the most used bands are the Red and the NIR, since in 

these spectral regions a sudden increase in reflectance occurs. The behaviour in these regions is called “Red 

Edge” (Fig. 5) and cannot be found in objects like water or soil.  
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Fig. 5 – The typical spectral signatures of vegetation and soil (Khorram et al., 2012) 

 

The most widely used vegetation index is the Normalized Difference Vegetation Index (NDVI) (Rouse et al, 

1973; Taramelli et al., 2013; Azar, Villa, Stroppiana, & Crema, 2016; Schmidt et al., 2016), but many other 

vegetation indices have been developed over time with different characteristics; some of the most 

common are listed below in Tab. 5. 

 

Name Equation Reference 

INTRINSIC VEGETATION INDICES 

Normalized Difference 

Vegetation Index 
NDVI = !

NIR " Red

NIR + Red
 Rouse et al (1973) 

Simple Ratio SR = 
#$%

%&'
 Jordan (1969) 

Difference Vegetation 

Index 
DVI = NIR – Red Richardson & Wiegand (1977) 

SOIL-ADJUSTED VEGETATION INDICES 

Weighted Difference 

Vegetation Index 
WDVI = NIR – slope*Red Clevers (1988) 

Soil-Adjusted 

Vegetation Index 
SAVI = 

()*,-(#$%.%&'-

#$%*%&'*,
 (Huete, 1988) 

Modified Soil-Adjusted 

Vegetation Index 
MSAVI = 

()*,-(#$%.%&'-

#$%*%&'*,
 

(Qi, Chehbouni, Huete, Kerr, & 

Sorooshian, 1994) 

WATER-SENSITIVE VEGETATION INDICES 

Normalized Difference 

Water Index 
NDWI = 

/01.2301

/01*2301
 Gao (1996) 
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ATMOSPHERICALLY CORRECTED VEGETATION INDICES 

Global Environmental 

Monitoring Index 
GEMI = Ƞ* (1 – 0.25Ƞ) – 

%&'.45)67

).!%&'
 Pinty & Verstraete (1992) 

ATMOSPHERE- AND SOIL-ADJUSTED VEGETATION INDICES 

Enhanced Vegetation 

Index 
EVI = 2.5 * 

/01.189

/01*:);189.:6;<>?8*@
 Liu & Huete (1995) 

FEATURE SPACE-BASED VEGETATION INDICES 

Tasselled Cap 

transform green VI 

TCG = a*Blue + b*Green + c*Red + d*NIR + e*SWIR1 

+ f*SWIR2 
Kauth & Thomas (1976) 

Perpendicular 

Vegetation Index 
PVI = 

/01.A;189.B

C)*!AE
 Richardson & Wiegand (1977) 

Tab. 5 – Some of the most common vegetation indices 

 

VIs have been said to quantify the “greenness” of a pixel (Huete,2004). Indeed, they have been related to 

specific plant characteristics, for instance: 

- vigour and biomass (Todd, Hoffer & Milchunas, 1998); 

- health status (Peters et al, 2002); 

- Leaf Area Index (LAI) (Carlson & Ripley, 1997); 

- Fractional Vegetation Cover (FVC) (Carlson & Ripley, 1997); 

- chlorophyll content (Gamon et al, 1995); 

- fraction of Absorbed Photosynthetically Active Radiation (fAPAR); 

- canopy structure (Baret & Guyot, 1991);  

- plant development and phenology (Vina et al., 2012). 

In most cases, the measure of these characteristics is meant to assess the agro-ecosystem functionality; 

however, VI-derived information on plant phenology has been used also for crop classification. 

 

1.2.5 Phenological Metrics (PMs) 

Monitoring crop phenology is an important task for the understanding of the agro-ecosystem, since it can 

provide much information: among this, how the growing seasons change through space and time (White et 

al, 2009); how agro-ecosystems react to climate change (White et al, 2009); how much the agro-ecosystem 

produces (Bolton&Friedl, 2013). Remote sensing techniques have been used to monitor crop phenology, 

taking advantage of the temporal resolution of some sensors (e.g. MODIS, Landsat, Sentinel); this is done 

by means of the temporal profile of a chosen Vegetation Index; since each crop has got its own 
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phenological stages, that can occur at different times during the year, observation of crop phenology has 

also been used for crop type classification: for instance, (Jin et al., 2016) used it to distinguish rainfed from 

irrigated wheat; (Li et al., 2015) classified six crop types based on NDVI and NDVI Time Series Indices.  

On the other hand, it is important to keep in mind two fundamental concepts: first, the signal coming from 

the surface is not always pure and is often contaminated by the influence of atmosphere and soil; for this 

reason, (M. A. White et al., 2009) prefers to speak of Land Surface Phenology (LSP), rather than Plant 

Phenology (PP), thus remarking that the VI temporal profile needs to be interpreted. Secondly, the 

phenological stages detected from EO cannot represent directly all the crop-specific phenological stages, 

some of which (e.g. kernel dough stage) are of extreme importance to agronomists (Zeng et al., 2016). Of 

course it is possible to derive the crop-specific phenological stages from the remotely sensed ones with 

specific models (e.g. Zeng et al, 2016) or observations (Vina et al., 2012), but these studies are beyond 

classification purposes. When working with classification, only some phenological metrics can be used, 

derived from evident features of the VI temporal profile (see Fig. 6 for some examples). For instance, Jin et 

al. (2016) used the peak of the NDVI temporal profile to distinguish rainfed from irrigated wheat; Li et al., 

(2015) developed some NDVI Time Series Indices (TSIs) describing the changing pattern of the vegetation 

index along the season; also Schmidt et al. (2016) used temporal variables, for instance the day in which the 

NDVI peak occurred, for cropland mapping; Matton et al. (2015) selected the reflectance values to use in 

the classification deriving them from the days of the maximum and minimum NDVI value, the maximum 

positive and negative NDVI slopes. The mentioned studies prove that this type of metrics can provide 

satisfactory results both for cropland and crop type mapping.  

 

 

 

Fig. 6 – Some of the metrics that can be derived from the 

temporal profile of a vegetation index 

 

 

 

 

 

1.2.6 Segmentation 

Segmentation has been defined as the process of partitioning an image into non-overlapping regions, which 

are called segments (Schiewe, 2002). This technique has been originally developed to deal with the intra-

class spectral variability found in the higher spatial and spectral resolution imagery (Khorram et al., 2012). 
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Indeed, the segmentation algorithm can produce clusters of pixels that are homogeneous and are therefore 

simpler to analyse in comparison to the single pixels; moreover, it reduces computational time. Some of the 

features that can be taken into account to describe the pixels’ homogeneity are the following ones (Dey, 

Zhang, Zhong, & Engineering, 2010): 

- spectral characteristics: the pixel values of an image over single or multiple bands; 

- texture: the spatial pattern represented by pixel values (Haralick et al, 1973); 

- shape and size: two complementary measures used to distinguish objects that have similar spectral 

features but different form (e.g. a river and a lake); 

- context: the relationship of a pixel with its neighbourhood (Thakur & Dikshit, 1997); 

- temporal characteristics: they are not directly used as a measure for segmentation, it is rather an 

approach to the analysis of the above mentioned metrics. 

Segmentation algorithms have been used to implement an approach called Object-Based Image Analysis 

(OBIA): some chosen attributes are used for the segmentation and in the classification process all the pixels 

belonging to a certain object are assigned to the same class (Blaschke, Lang, & Hay, 2008). This approach is 

particularly useful in agricultural contexts, where the intra-field variability, caused by mixed pixels at the 

field borders (De Wit & Clevers, 2004), soil variability or other factors, may lead to undesired salt-and-

pepper effects; the application of OBIA, instead, generates objects corresponding to the single fields (Peña-

Barragán et al., 2011). The choice of a good segmentation can influence the final results of the classification 

phase (B. Schultz et al., 2015). 

OBIA has been successfully used in Object-based Crop Identification and Mapping (OCIM) (Peña-Barragán 

et al., 2011), in cropland mapping (Schmidt et al., 2016), with a temporal approach (Li et al., 2015), 

providing similar or better results in comparison to the pixel-based approach (Valero et al., 2016). In most 

cases, the quality of the object-based classification is determined by the characteristics of the real fields, 

and in particular by their dimension (Valero et al., 2016). 

 

1.2.7 Classification  

Classification is a process in which each pixel of an image is assigned to a category, among a set of 

categories of interest (Khorram et al., 2012); this allows the transformation of numerical data into ordinal 

or thematic information. The classification process consists of three phases (Brivio, Lechi, & Zilioli, 2006): 

training, allocation and validation.  

In the training phase, the analyst defines a set of information in order to help the system distinguish the 

different classes; in practice, using ancillary data, the analyst selects some pixels, for the training, leaving 
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also a sufficient number of pixels for the validation. Usually, the minimum number of pixels per class 

accepted is between 10k and 30k, where k is the feature space dimension (Brivio et al., 2006). The features 

space dimension is most commonly represented by the spectral bands of the image, but it can also consist 

of synthetic spectral bands containing other types of information (e.g. Vegetation Indices); the number of 

bands to be used in the feature space should be accurately chosen in order to avoid the overfitting of the 

model. There is not a defined training:validation ratio to be used for the division of the pixels; it is possible 

to find studies using  training:validation ratio of 2:1 (Azar et al., 2016), 1:1 (Hao, Zhan, Wang, Niu, & Shakir, 

2015), 1:2 (Valero et al., 2016), 80:20 (Brown, Kastens, Coutinho, Victoria, & Bishop, 2013), 70:30 (Oumar, 

Mutanga, & Ismail, 2012). Several criteria can be used to choose the training and the validation pixels; 

however, Random Sampling (Hao et al., 2015) or Stratified Random Sampling (Azar et al., 2016) are most 

commonly used.  

The training phase is not always part of the classification process, since it requires ancillary data. Based on 

the presence of the training phase in the process, classification systems can be divided into: 

- supervised systems: the analyst defines the training sites that represent the classes in the chosen 

classification scheme; then the classification algorithm assigns each pixel to the best matching class 

(Khorram et al., 2012); 

- unsupervised systems: the classification algorithm defines clusters of pixels, on the basis of features 

selected by the analyst; studying the output clusters, the analyst assigns them to the classes of 

interest. Unsupervised classification systems can be useful when there is not enough input data, but 

requires the analyst to define accurately the parameters (e.g. number of classes). The final purpose is 

indeed to have clusters representing a defined class, but if the parameters are not set properly, the 

clusters may comprise just mix of classes. 

 

In the allocation phase, the algorithm assigns a label (the class) to each pixel in the image; allocation 

algorithms can be divided into: 

- hard classifiers: they adopt a Boolean logic according to which each pixel strictly belongs or not to a 

class. They include, for instance, the Maximum Likelihood Classifier (MLC) and the Parallelepiped 

Algorithm (PA); 

- soft classifiers: they admit the possibility that a pixel belongs to more than one class; they include fuzzy 

logic systems, Artificial Neural Networks (ANN), Spectral Unmixing (SMA) and Multinomial Logistic 

Regression (MLR). 

In general, there are some main issues that the analyst should keep in mind when choosing the algorithm 

to use (Millard and Richardson, 2015): the Hughes phenomenon, which is the increase in classification 
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accuracy when there is an increase in the input variables, to a point in which the accuracy decreases 

(overfitting point); non-linearity of variables; imbalanced training samples and noise in training and 

validation data; computational time. Thus, the pros and cons of each algorithm should be considered.  

The main advantage of soft classifiers is the possibility to deal openly with the problem of “mixed pixels”: 

especially when dealing with low and medium-spatial resolution data, pixels rarely contain only one object 

within their boundaries. Soft classifiers admit the possibility that one pixel does not exactly correspond to 

one class. For instance, with SMA the observed radiance is modelled as a mixture of spectrally pure 

endmember radiances (Taramelli et al., 2013), whose contribution to the total pixel radiance is calculated. 

In particular, in Linear SMA (LSMA), the contributions of each endmember in a pixel are modelled as a 

linear combination of endmember spectra weighted by the percentage ground coverage of each 

endmember (Elmore, Mustard, Manning, & Lobell, 2000). Thus, SMA provides abundance maps of the 

chosen classes, which show the percent cover of each class in every pixel. This approach has been used for 

vegetation studies, ranging from habitat type mapping (Valentini, Taramelli, Filipponi, & Giulio, 2015) to 

urban vegetation abundance (Small & Lu, 2006). There are studies showing that the SMA is a robust 

method for the estimation of vegetation abundance (e.g. Elmore, Mustard, Manning, & Lobell, 2000) and 

that therefore it is well suited for monitoring vegetation health and abundance (Small & Lu, 2006), 

particularly in arid and semi-arid environments (Elmore et al., 2000).  

However, maps of continuous variables, such as abundance, are difficult to interpret for a non-experienced 

user. On the other hand, the translation of this quantitative information into a thematic map poses a 

challenge even for experienced analysists. In addition to this, analyses conduced with soft classifiers tend 

to be quite time-consuming. Finally, the sub-pixel analysis obtained with soft classifier is not always 

necessary: when the size of the object is bigger than the size of the pixel, the performance of hard 

classifiers is only marginally affected by mixed pixels. For these reasons, the use of hard classifiers is more 

common: they can quickly provide easy-to-interpret information and are suitable for the monitoring of 

agricultural systems in many countries.  

Among hard classifiers, some of the most used algorithms for land cover classification are: 

- Maximum Likelihood Classifier: it is the most used in remote sensing, since it provides a consistent 

approach to data variability (Chuvieco & Huete, 2010); it works by assigning each pixel to the class for 

which the membership probability is higher. Its main drawback is the assumption that the pixels’ 

Digital Levels (DLs) are normally distributed; this also implies that its accuracy decreases when there is 

overlap between the probability functions. However, good performances have been reported also in  

comparison to more complex classification algorithms (Azar et al., 2016). 
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- Classification Trees (CTs): a decision tree is defined as a classification procedure that recursively 

partitions a dataset into smaller subdivisions on the basis of a set of tests defined at each branch (or 

node) in the tree (Friedl & Brodley, 1997). The advantages of this classification system are the following 

(Friedl & Brodley, 1997): they do not require any assumption about the statistical distribution of the 

data; they can handle input data that have non-linear relations with the respective classes; they can 

handle data of different nature; they are easily interpretable; they allow the integration of expert-

knowledge into the model (Valentini et al., 2015). Because of the several advantages, many automatic 

algorithms for building the decision tree have been proposed in the last years (Chuvieco & Huete, 

2010); for instance, the Classification And Regression Tree (CART), ID3, C4.5, C5.0, J48. CTs have 

achieved good results also in crop type mapping (Villa et al., 2015). 

- Random Forest (RF) (Breiman, 2001): a random forest is a classifier consisting of several small decision 

trees, instead of a single big one (like in normal CTs), which are tuned and pruned without the analyst’s 

oversight; each tree is grown on a training set created by Bootstrap aggregating (also called bagging): 

this means that every training set  is derived by sampling uniformly and with replacement from the 

original dataset; the use of slightly different training sets for each tree and the use of multiple trees 

helps in noise reduction. The out-of-bag (oob) samples are used to evaluate the error rate of the tree 

and to select the importance of the classification variables. Each tree node is splitting using a different 

set of variables, randomly selected, in order to minimize the correlation between the classifiers in the 

ensemble. During the classification, every tree in the forest, which provides a different result, classifies 

each pixel; the pixel is then assigned to the class, which was the output of the majority of the trees in 

the forest. The main characteristics of the Random Forests are: by adding more trees to the forest, the 

results converge, avoiding the problem of overfitting; the accuracy of the RF depends on the strength 

of the individual tree classifier and on a measure of the dependence between them; the results are 

insensitive to the number of features used to split each node; they perform well with high-dimensional 

data. In addition to this, the RF algorithm requires only two parameters to be set by the user: the 

number of trees to be grown and the number of features to be used at each node; this makes it easier 

to use in comparison to other algorithms, for instance Support Vector Machines (SVMs) (Pal, 2005). 

Finally, it is faster in training than other ensemble methods, can estimate the importance of the 

variables for the classification and can detect outliers (Gislason, Benediktsson, & Sveinsson, 2006). The 

advantages of RF have made it the most popular classification algorithm for land cover classification; 

RF has been compared to Gradient Boosted Trees and Support Vector Machines (Jordi Inglada et al., 

2015), Multinomial Logistic Regression and C5.0 decision-tree classifier (Schmidt et al., 2016), J48 

Classification Tree (Villa et al., 2015), Adaboost classification tree (Chan & Paelinckx, 2008) always 

yielding better or comparable results. 
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The validation phase is meant to determine the capacity of the algorithm to correctly classify the pixels. 

This capacity is called “accuracy” and it is defined as the degree of agreement between the produced map 

and the ground truth (Brivio et al., 2006). Indeed, the accuracy is expressed as the percent correctly 

classified sample sites, as compared to the corresponding reference data (Khorram et al., 2012). The 

accuracy can be calculated over the single classes of interest or over all the classes (Overall Accuracy, OA). 

The most used metrics to quantify the accuracy of a map are the following ones (Brivio et al., 2006): 

- User’s accuracy (UA): the ratio between the correctly classified pixels in a class and the total number of 

pixels assigned to that class in the produced classification (XC); it is associated with the Commission 

Error (CE); 

- Producer’s Accuracy (PA): the ratio between the correctly classified pixels in a class and the total 

number of pixels belonging to that class in the reference data (XR); it is associated with the Omission 

Error (OE); 

- Overall Accuracy (OA): the ratio between the correctly classified pixels and the total number of pixels 

in the map (XTOT); 

This data is calculated from a contingency table, called error matrix or confusion matrix. It is a square matrix 

where the columns represent the ground truth (reference data) and the rows represent the results of the 

classification (classified data); in the diagonal of the matrix the correctly classified cases are found.  

 

  Ref.   

  C1 C2 C3 Tot UA CE 

 

 

 

 

 

Class. 

C1 X11 X12 X13 

XC1 

(X11+X12+X13) 
X11/ XC1 (1- X11)/ XC1 

C2 X21 X22 X23 

XC2 

(X21+X22+X23) 
X22/ XC2 (1- X22)/ XC2 

C3 X31 X32 X33 

XC3 

(X31+X32+X33) 
X33/ XC3 (1- X33)/ XC3 

 
 

Tot 

XR1 

(X11+X21+X31) 

XR2 

(X12+X22+X32) 

XR3 

(X13+X23+X33) 

XTOT 

(XR1+ XR2+ XR3+ 

XC1+ XC2+ XC3) 

  

 PA X11/ XR1 X22/ XR2 X33/ XR3    

 OE (1- X11)/ XR1 (1- X22)/ XR2 (1- X33)/ XR3    

 

Tab. 6- The general structure of a confusion matrix 
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1.3 The potential of remote sensing for agro-ecological zoning 

Most AEZs use remotely sensed data for their climatic variables (Mücher et al., 2016). The primary driver of 

change in agro-ecological zones is often considered to be climatic change (Chikodzi, Hardlife, Farai Malvern, 

& Talent, 2013), thus making remote sensing the perfect source of up-to-date information. Examples like 

the one of (Mugandani, Wuta, Makarau, & Chipindu, 2012) clearly show that agro-ecological zones are 

subject to noticeable change even in a short time lapse as 60 years, and therefore need to be constantly 

monitored. However, Land Use and Land Cover (LULC) are expected to change as rapidly (Olesen & Bindi, 

2002). Land cover is an important part of agro-ecological zonations in general, as demonstrated by the case 

of (Mücher et al., 2016), and it represents a fundamental variable when studying nutrient dynamics and 

environmental pollution deriving from agricultural activities. Consequently, land cover should be monitored 

at least as frequently as climatic data. Conducting regular campaigns for the collection of soil and land 

cover data is often costly and not feasible; remote sensing, instead, may offer up-to-date information with 

global coverage. Other advantages of including EO-derived information into AEZs are: 

- the availability of historical data: missions like Landsat, SPOT or MODIS offer historical data that can be 

used to track the changes occurred in agro-ecological zones in the past; 

- the possibility to continuously cross-validate the available data. 

Moreover, issues regarding spatial resolution can be overcome with the newest sensors, offering data at 10 

to 30 m.  

In conclusion, when land cover or crop types data is required in an agro-ecological zonation, remote 

sensing can represent the main source of information.  
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2.  Description of the study area 

2.1 Italy: current state of the agricultural sector 

The importance of agriculture in Europe does not lie only in its contribution to the general economy 

(Europedia, 2011), but also in its impact on land and on the quality of environment, since famers manage 

almost half of the European land area (EEA, 2011). The European Union measures the impact of agricultural 

activities on the environment mainly in terms of soil erosion, greenhouse gas emissions, climate change, 

land use, irrigable area, water pollution, nitrogen surplus, biodiversity, habitat conservation and organic 

farming (EEA, 2011). In this framework, Italy contributes with one of the highest values of Utilized 

Agricultural Area (UAA) in the EU-28 (Eurostat, 2012), thus representing a relevant area for environmental 

issues at the European level.  

At the national level, Italian agriculture is an important sector: it represents 2.2% of the total Gross Value 

Added (GVA) of the country. The products are diverse (Fig. 7), with noticeable differences across regions in 

farm structure and in production. The average farm size (12 ha) is smaller than the European average (16.1 

ha), with more than 50% of the farms consisting of less than 5 ha (European Commission, 2016a); on the 

other hand, the UAA and the number of farms are among the highest in the EU-27 (Eurostat, 2012). These 

statistics clearly describe the historical problem of agricultural land pulverization in Italy, even though in 

the last years there has been a tendency towards the increase of farm size (Eurostat, 2012). Another 

important issue is represented by regional differences: the Northern regions tend to have larger (Istat, 

2013) and more profitable (European Union, 2015) farms. The gap between the North and the South of the 

country also concerns the environmental problems: for instance, while the North is more subject to nitrate 

pollution (EEA, 2012a), the South has got more pressure on water sources (EEA, 2016) and it will need to 

deal with water-limited crop yields in the future (EEA, 2012b). 

 

Fig. 7 – Most important agricultural products in Italy (European Commission, 2016b) 
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2.2 The Muzza area 

The study area is located in the North of Italy, in the Lombardy region (Fig. 8); it includes shares of land 

from the Provinces of Lodi, Milan, Pavia, Bergamo and Cremona, for a total area of approximately 1800 

km2, with homogeneous climatic characteristics. It is an agricultural area that takes advantage of an 

artificial canal, the Muzza Canal, which makes it one of the biggest irrigated areas of Lombardy; the canal 

originates from the Adda River, which is the longest tributary of the Po River, the longest river in Italy. 

Along the Po River, an agricultural area extends, the Padan Plain, of which the Muzza is part. 

 

Fig. 8 - The location of Muzza within Italy and the Provinces of the Lombardy Region (Global Administrative Areas, 2012) 

A great variety of crops is cultivated in the area (Regione Lombardia, 2015): cereals, cash crops, tree crops, 

woods, vegetables, pulses and forages are grown in the Province of Lodi; in addition to this, there are 

greenhouses, nurseries, rural buildings and fallow fields. Annual crops comprise winter crops, cultivated 

from October to June, and summer crops, cultivated from April to October (Azar et al., 2016). The crop 

calendar of some of the main cereals, cash crops and forage crops is illustrated in Fig. 9; the calendar of 

vegetables, pulses, some forages and other crops with a short growing cycle is more flexible and therefore 

cannot be represented in a similar chart. 
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Fig. 9 – Crop calendar of some of the main cereals, cash crops and forage crops found in Muzza (re-elaborated from Baldoni & 

Giardini, 2001) 

According to Regione Lombardia (2015), the most common crops on the territory are maize and winter 

cereals; in addition to this, also greenhouses and fallow or abandoned land are widespread. 

The agricultural sector of the Lombardy Region is among the major ones in Italy, in economic and 

technological terms. Indeed, Lombardy is the most important Italian region for livestock production 

(Eurostat, 2012); the presence of a strong livestock production influences the farmers’ choices also in terms 

of crops cultivated, indeed more than 50% of the UAA is destined to forages (herbages, meadows and 

pastures) (re-elaborated from Istat, 2011). In addition to this, Lombardy is among the top regions for 

average farm size (18.2 ha) (Eurostat, 2012), use of IT services (Istat, 2010) and average farm economic size 

(Eurostat, 2012). The economy and the overall structure of the agricultural system can be considered 

among the most intensive in the country.  

The great development of agricultural activities is favoured by the pedo-climatic conditions. The area is flat; 

the soils have high potential for agricultural production, since they are not very rich in soil organic matter 

but in they are considered fertile in general (Costantini, Urbano, & L’Abate, 2004) The climate is temperate-

suboceanic (Costantini et al., 2004), with 827.6 mm of rain per year (ASP Lombardia, 2010). The yearly 

amount of precipitation (on average between 670 and 1200 mm) (ARPA Lombardia, 2010), together with 

the water provided by the canal, makes water abundant.  

However, the water resource is subject to pressure both on the quantitative and qualitative side. In the first 

place, the water demand is very high, coming not only from the agricultural sector but also from the 

industrial one; moreover, the most used irrigation technique is surface irrigation, which in general does not 
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yield high water use efficiency. The vulnerability of the aquifer to pollution is especially influenced by the 

superficiality of the aquifer and the texture class of soils. Indeed, the latest report on water quality of the 

Lodi Province, where the aquifer is very superficial, reports a high content of nitrates and pesticides and 

attributes it primarily to agricultural activities (ARPA Lombardia, 2015). A study conducted in the 

framework of the EUCENTRE project SEGUICI studied from EO the texture of soils as a proxy for the 

vulnerability to pollution (Aa. Vv., personal communication, 2016; Seguici, 2017; Seguici, 2015; Google Play, 

2017). 

Action has been taken in order to control the use of nitrogen fertilizers and pesticides and decrease the risk 

of water pollution. In particular, the management of nitrogen fertilizers and of liquid manure is regulated 

according to the European and Italian law. The legislative references are the EU Nitrates Directive 

(European Commission, 1991) and the Action Programme of the Lombardy region (ERSAF Lombardia, 

2016). The Action Programme defines the areas which are subject to the rules and sets the rules 

themselves. Beginning from the growing season 2016\2017, the whole territory of the Lombardy Region 

has been divided into 6 pedoclimatic zones, defined on the basis of the climate and soil (Vulnera & Guida, 

2016); a biweekly bulletin ratifies the permission to use nitrogen fertilizers in the single zones. The case of 

Lombardy thus represents a perfect example of how agro-ecological zonations can help researchers in 

defining the risk of nitrate pollution from agriculture; in turn, researchers serve as a valuable support for 

policy makers dealing with environmental legislation.  

 

 

Fig. 10 – The pedoclimatic zones of the Lombardy Region: Alps (1), Western Prealps (2), Eastern Prealps (3), Western Plain (4), 

Central Plain (5), Eastern Plain (6) (Vulnera & Guida, 2016) 
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2.3 Location of Muzza within the existing AEZs 

According to different zonations, Muzza is divided into a different number and type of zones (Tab. 7 and 

Fig. 11). The division into pedo-climatic zones provided by the Region Lombardy (from now on called LoPCZ) 

is also included. See also Appendices 1-5 for the maps of each zonation. 

Zoning system N. of zones Zone type 

GYGA-ED 4 4502  
GDD= 3792 – 4829;  
Aridity Index= 6589 – 7785;  
Temperature seasonality= 3833 - 8355 

  4602  
GDD= 3792 – 4829;  
Aridity Index = 7786 – 8685;  
Temperature seasonality= 3833 - 8355 

  4702  
GDD= 3792 – 4829;  
Aridity Index = 8686 – 10181;  
Temperature seasonality= 3833 - 8355 

  4802  
GDD= 3792 – 4829;  
Aridity Index = 10182 – 12876;  
Temperature seasonality= 3833 - 8355 

GAES 1 Warm temperate and mesic hills dominated by rocks and cropland 

GEns 1 Warm temperate and mesic 

HCAEZ 2 Temperate\Humid 

  Temperate\Sub-humid 

LoPCZ 2 Central Plain 

  Western Plain 
Tab. 7 - The agro-ecological zones into which Muzza is divided, according to different zoning systems 

 

 

Fig. 11 - The division of Muzza into agro-ecological zones, according to five existing 

 zonations (GAES, GEnS, HCAEZ, GYGA and LoPCZ). Credits for the satellite image at Google Maps, ©2017 TerraMetrics 
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The number of zones is the most evident difference among the zoning systems. The GAES and the GEnS 

describe the whole area with one zone only and therefore are too general to be used at the local level; 

GYGA, HCAEZ and LoPCZ, instead, account for territorial differences.  

It can be noted that while LoPCZ divides the area into a Western and an Eastern part, GYGA-ED and HCAEZ 

show a North-South gradient (Fig. 11). The Region Lombardy did not provide any description of the pedo-

climatic zones, therefore it is not possible to understand what are the factors differentiating the two LoPCZ 

zones found in Muzza.  

The four GYGA zones show the same temperature seasonality and the same GDD, but different aridity 

indices. Aridity indices are mostly used for water and irrigation management, but they can also prove useful 

for the estimation of the aquifer vulnerability to nitrate pollution, since rainfall influences the percolation 

of nutrients through the soil profile. Unfortunately, the GYGA-ED only accounts for climate characteristics, 

thus it cannot provide a complete view over the factors influencing nitrate pollution in the area. 

The same comments can be applied to the HCAEZ zones. The Northern part of Muzza has a mean monthly 

temperature adjusted to sea-level less than 5°C for 1 or more months and has a growing period longer than 

270 days; the Southern part of Muzza has a mean monthly temperature adjusted to sea-level less than 18°C 

for 1 or more months and has a length of the growing period between 180 and 260 days. These 

characteristics can be considered quite general and only consider the climate features of the area, while 

pedological conditions are as important when dealing with nutrient cycles and pollution.  

Indeed, the Map of the Soils of Italy (Italian National Centre for Soil Mapping, 2012) (Fig. 13) shows that 

Muzza is located in the region of the soils of Po and associated hills, that includes Cambisols, Calcisols, 

Luvisols, Vertisols and Fluvisols. Differences among these types are soils are relevant for agricultural 

activities (Brady & Weil, 2008), in that they have different 

contents of soil organic matter and micronutrients and that 

they respond differently to precipitations and irrigation. Also 

the above mentioned project SEGUICI managed to distinguish 

soils of the area from EO, detecting two types of soils with 

different spectral signatures (Aa. Vv., 2016) (Fig. 12). 

However, almost all the zonations reviewed do not take such 

soil variability into account.  

 

Fig. 12 - A detail of the two types of soil detected in the Muzza for the 

SEGUICI project (Aa. Vv., personal communication, 2016)  
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Fig. 13 - The location of Muzza within the Soil Regions of Italy (re-elaborated from Costantini et al., 2004) 

 

The following conclusions can be drawn from the review of existing AEZs for use in the evaluation of nitrate 

pollution from agricultural activities:  

- most of the global zonations do not provide enough detail to be used in territory analysis and in 

planning at the local level;  

- the zonations that describe climatic territorial differences, such as the GYGA-ED and the HCAEZ, lack 

soil description; given that soil characteristics may have an influence on environmental pollution 

derived from agricultural activities and that the study area shows soil variability, their contribution to 

the monitoring of environmental pollution from agricultural activities can only be limited;  

- the LoPCZs shows a good degree of detail while accounting for both soil and climate factors, but the 

description of the parameters used cannot be retrieved from official sources. 
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3. Materials and methods 

3.1 Data 

3.1.1 Ancillary data 

The following ancillary data was used: 

- reference data, consisting of a dataset with the description of the agricultural cadastral parcels of the 

Province of Lodi (Regione Lombardia, 2015): it contains information about the crop(s) cultivated in 

each parcel (land_cover), the total area of the parcel (parcel_area), the area of the parcel dedicated to 

each crop (field_area). The information is provided by the farmers owning the parcels; the dataset is 

referred to the crop year 2014-2015, which spans from the 1st of November 2014 to the 31st of October 

2015; only the data of the Province of Lodi was chosen since this administrative region represents 

almost 50% of the study area; 

- a vector file of the cadastral parcels of the Province of Lodi (Lombardia, 2017); 

- a mask of the study area, which was produced in the framework of the EUCENTRE project SEGUICI. 

The reference data and the vector file are open source and provided by the Region Lombardy through its 

online portal (Lombardia, 2017). Every file is provided in the UTM32N coordinate system and WGS84 

geodetic system.  

 

3.1.2 Imagery 

The study area is covered by 2 Landsat8 scenes: Path 194, Row 28 and Path 193, Row 29; this overlap 

ensures that images of the area are acquired every 8 days. Landsat8 imagery can be freely downloaded 

from the USGS Earth Explorer, as a Level 2A product, which contains surface reflectance after atmospheric 

correction(USGS, 2014). 

The period ranging from 04-Aug-2014 to 29-Dec-2015 was analysed, for a total of 65 scenes. The period of 

interest is represented by the crop year 2014-2015, which spans from the 1st of November 2014 to the 31st 

of October 2015; however, it was decided to extend the analysis up to November 2015 to make sure that 

late sown crops were also harvested. In addition to this, the months of August, September and October 

2014 and December 2015 were used in order to improve the interpolation of the temporal VIs curves. It 

was decided to analyse the crop year instead of the solar year of the Gregorian calendar (1st January – 31st 

December) in order to analyse with continuity also the growth of winter crops, which may be sown in 

October and harvested at the beginning of the summer of the next year. The cloud cover over the area of 
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interest in each image was visually estimated to have a descriptor of the quality of the imagery.  The 

images used are listed in Appendix 7. 

Fig. 14 shows that more than half of the images used have got a cloud cover higher than 60%. Usually, this 

value is adopted as a threshold to determine which images to keep and which to discard. However, not 

always a high cloud cover affects all the pixels of the image; therefore, it was decided to keep all the 

images, assigning a quality flag to the single 

pixels. The quality flags are used in the next 

stages of the processing chain, to decide if to 

keep the pixel or to discard it. 

Fig. 14 – Timeline of the cloud cover over the area of 

interest; the orange line divides the dates with more than 

60% cloud cover from the others 

 

3.2 Processing chain 

The general workflow is shown in Fig. 15. The single steps of the procedure are explained in the following 

paragraphs.  

 

Fig. 15 - The processing chain used in this study;  

the construction of the in situ training and validation datasets is described in §4.2.2.4  
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3.2.1 Pre-processing 

The pre-processing consisted of atmospheric corrections. Cloud, atmospheric aerosol or other suspended 

particles in the atmosphere may alter the data recorded by the sensor; atmospheric corrections are meant 

to fix these atmospheric effects on the image. The Italian Institute for the Research and the Protection of 

Environment (ISPRA) provided the pre-processed data. 

 

3.2.2 Calculation of VIs and PMs 

Calculation of the VIs and PMs was performed by the ISPRA. A general description of the calculated metrics 

follows. 

In order to test VIs with different characteristics, VIs from different categories were calculated: the NDVI for 

the intrinsic VIs the SAVI and the MSAVI for the soil-adjusted VIs; the EVI for the atmosphere- and soil-

adjusted VIs; the TCT for the feature space-based VIs (equations (1), (5), (6), (9), (10) of Tab. 5). The VIs 

were calculated over all the images using the Landsat8 bands as shown in Tab. 5.  

Vegetation Index Calculation with L8 bands 

FGHJ = !
FJK " KLM

FJK + KLM
 NDVI = !

OP " OQ

OP + OQ
 

SAVI = 
(S*T-(FJK.KLM-

FJK*KLM*T
 SAVI = 

()*,-(U7.UW-

U7*UW*,
 

MSAVI = 
(S*T-(FJK.KLM-

FJK*KLM*T
 SAVI = 

()*,-(U7.UW-

U7*UW*,
 

EVI = 2.5 * 
FJK.KLM

FJK*XS;KLM.XY;Z[\L*T
 EVI = 2.5 * 

U7.UW

U7*]);UW.]6;U6*,
 

TCG = a*Blue + b*Green + c*Red + d*NIR 

+ e*SWIR1 + f*SWIR2 

TCG= (-0.2941*B2) + (-0.2430*B3) +  
(-0.5424*B4) + (0.7276*B5)  + 
(0.0713*B6)  + (-0.1608*B7) 

Tab. 8 - The vegetation indices chosen for this study and their calculation with Landsat8 bands; the TCG coefficient were chosen 

according to (Baig, Zhang, Shuai, & Tong, 2014) 

 

Since the use of Phenological Metrics was proved to be useful for crop type classification, 19 PMs were 

computed using the temporal profiles of the VIs as the input. Their list and description is shown in Tab. 9, 

while Fig. 16 shows where the PMs are detected on a sample VI temporal curve. The Number of Growing 

Seasons was computed once for each pixel, while the remaining 18 metrics were computer for each of the 

seasons detected. 
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Phenological metric 
 

Acronym Description 

Number of Growing Seasons 
 

NGS Number of crops grown. 

Start Of Season: VI value 
 

SOS Minimum value of the VI before the curve begins to 
increase. 

Start Of Season: date SOS_date Date on which the SOS occurs. 

Start of Growing Season: VI value 
 

SGS Value of the VI in the point where the curve begins to grow; 
it represents the moment when the plant begins to grow. 

Start of Growing Season: date SGS_date Date on which the SGS occurs. 

Peak: VI value 
 

Peak Maximum value of the VI during the growing season. 

Peak: date 
 

Peak_date Date on which the peak occurs. 

End of Growing Season: VI value EGS Value of the VI in the point where the curve begins to 
decrease; it represents the moment when the plant begins 
to turn yellow. 

End of Growing Season: date EGS_date Date on which the EGS occurs. 

End Of Season: VI value EOS Value of the VI where the curve reaches a minimum after the 
peak; it represents the moment of the harvest. 

End Of Season: date EOS_date Date on which the EOS occurs. 

Amplitude Amp Difference between the VI value at the peak and the VI value 
at the SGS. 

Maximum Growth Rate MGS Maximum positive slope of the curve. 

Maximum Growth Rate: date MGS_date Date on which the MGS occurs. 

Maximum Senescence Rate: date MSR Maximum negative slope of the curve. 

Maximum Senescence Rate MSR_date Date on which the MSR occurs. 

Duration Of Season DOS Number of days between the SGS and the EGS; it represents 
the length of the growing cycle of the plant. 

Length of Maturity Plateau LMP Number of days for which the VI has got a value which is 
higher than the 7/10ths of the peak. 

Seasonal Time Integrated index STI The integral of the VI curve calculated between the SGS and 
the EOS. 

Tab. 9 – Phenological metrics tested in this study 

 

Fig. 16 - Typical location of the calculated phenological metrics on a sample VI temporal curve 
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3.2.3 Selection of VIs and PMs 

After the computation of the VIs and of the PMs, only some of them were selected to be used in the 

classification. Three types of analysis were done to help in the selection: 

- a visual assessment of the performance of the indices: it entailed evaluating their general behaviour, 

which also affects the detection of the phenological metrics. It is important for the temporal curve to 

be neither too smooth nor too rough: in the first case, the minimum and maximum values (e.g. peak, 

end of seasons) would not be detected; in the second case, local minimum or maximum values would 

be erroneously detected as phenological stages. Consequently, some indices can detect some specific 

PMs more accurately than others. The visual assessment evaluated the smoothness or roughness of 

the curves, together with the values of the PMs. VIs that produced too smooth\rough temporal curves 

were taken out of the analysis; VIs evaluated positively, instead, were kept for the final classification. 

- an assessment of the performance of the PMs: by checking their values, it was determined if there 

were metrics systematically producing any type of error or metrics that did not contribute a reasonable 

amount of information.  

- a statistical assessment of the performance of VIs and PMs together: the following statistical metrics 

were computed, per PM, per VI, per class: minimum, maximum, first quartile, median, third quartile, 

frequency distribution. The metrics were then graphically represented in the form of violin plots. These 

plots are similar to box plots, in that they show the median, the first and the third quartile, with the 

whiskers representing the maximum and the minimum values; however, they also have a kernel 

density plot along the sides.  

The analysis was done using QGIS 2.18.3 (QGIS Development Team, 2017). 

 

3.2.4 Segmentation 

Image segmentation was performed over the whole area, since most of the fields are bigger than 1 pixel 

(900 m2). This was confirmed by a visual analysis of the images and by national statistics: indeed, according 

to the Italian National Institute of Statistics (ISTAT), only 11.5% of the companies of the provinces included 

in the Muzza area have got a total UAA lower than 1 ha (ISTAT, 2012). Performing the segmentation only on 

one image would not allow to separate effectively fields which are contiguous and which have got the same 

type of land cover (green vegetation, irrespective of the crop, or bare soil) at the same time. Using more 

than one image, instead, increases the probability of separating different fields: indeed, it could be that two 

contiguous fields are covered with a summer crop at a given moment in the summer; but it’s less likely that 

they have the same summer crop and the same winter crop in a year. Consequently, images of different 
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periods of the year were chosen to perform the segmentation, compatibly with cloud cover. Only Bands 4 

(red) and 5 (NIR) were used, to reduce data redundancy; the following dates were used to enhance the 

temporal variance in the input segmentation dataset:  

Date 
(dd\mm\yy) DOY 

01\04\2015 91 

20\06\2015 171 

15\07\2015 196 

24\09\2015 267 

27\11\2015 331 

Tab. 10 - Dates of the Landsat8 images used as input for the segmentation phase 

 

Segmentation was performed with a double purpose: first, to define homogeneous polygons; second, to 

reduce the computational time, which is one of the objectives of segmentation in general.  

Then, the output of the segmentation was intersected with the parcels of the Province of Lodi in QGIS, in 

order to further increase the level of homogeneity within the polygons.  

Following the intersection, polygons with an area lower than 1 ha were discarded; furthermore, classes 

with a number of fields lower than 10 and classes with a total class area lower than 10 ha were excluded. 

The crops excluded from this selection were aggregated into the class “Other crops” and used as well for 

the training and validation of the classification algorithm. The purpose of this latter class is to gather pixels 

of crops that are not included in the selected ones. If the class “Other crops” is not present, a pixel of 

sorghum may be classified as any of the selected classes, for instance maize; the same would be for all the 

pixels of the study area, resulting in a crop map consisting only of some crops. Keeping an extra class, 

instead, ensures the distinction between the selected classes and all the other crops. 

Finally, for each polygon, only the median values of the Phenological Metrics were considered. Indeed, the 

presence of trenches, natural vegetation or tree rows along the field borders may introduce outliers 

affecting the training phase; using the median, the problem of outliers can be avoided.  

 

3.2.5 Selection of the training and validation datasets 

The ancillary data was organized and divided to build one training and one validation dataset (Fig. 19). 

Since the retrieved data was not consistent with the objects that can be acquired from EO, the following 

steps were performed, in order to make it usable for the purposes of the analysis: 



 

44 

 

1) the vector file of the agricultural parcels of the Province of Lodi was intersected with the mask of 

the Muzza: this allowed to discard from the analysis some parcels, in the South of the Province, 

that did not fall within the studied area. 

2) In the reference data, the 218 registered crops were grouped in 71 final classes: indeed, some 

classes were repeated with slightly different names (e.g. “Maize” and “Sweet maize”); other classes 

were grouped together according to the characteristics of their growing cycle (e.g. silo maize and 

maize for the production of energy are harvested at the same stage of the growing cycle); finally, 

some crops were grouped according to their assumed spectral similarity (e.g. barley and wheat 

were renamed “Winter cereals”). The 71 classes belong to 5 macro-categories, namely cereals & 

cash crops, forages, pulses & vegetables, trees, other classes (including non-cultivated land, 

greenhouses, rural buildings, nurseries and buffer areas). Appendix 6 shows the classes found in 

the dataset and the classes in which they were grouped.  

3) The reference data was joined with the table of attributes of the vector file, using the cadastral 

codes as the common fields in the union. The output was a shapefile in which to each parcel 

polygon was attributed a label with the corresponding class(es). 

4) The entries relative to fields with an area lower than 1 ha were discarded (field_area), since hardly 

detectable from EO. 

a) The number of crops registered per parcel (crop_count) was computed; the parcels with more than 

1 registered crop were discarded. The purpose of this choice was to have a high degree of certainty 

over the class present in the pixel, needed both for training and validation. Indeed, in the dataset 

there were also parcels with more than one class: this data may imply that there was a crop 

succession during the year or that the parcel is divided into multiple fields with different crops. 

However, the vector file only contains information about the parcels, and not about the single 

fields; consequently, it is not possible to know with certainty the type and number of crops in the 

pixels of parcels with multiple classes, which were kept out of the analysis. 

5) Two metrics were computed for the remaining entries: the total area of the class, calculated as the 

sum of the areas of the fields where the class was registered (class_area); the number of fields on 

which that class was registered (num_fields). 

6) Classes with a class_area<10 ha were discarded, since they were considered not enough 

represented on the territory.   

7) Classes with a number of fields lower than 10 (num_fields<10) were discarded, so as to have at 

least 7 fields for the training phase and 3 fields for the validation phase. 
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8) This final dataset was divided into two subsets, one for training and one for validation: within the 

polygons of each crop class, 70% was destined to training and the remaining 30% to validation. The 

Random Sampling algorithm was applied. 

At the end of step 7), 17 classes were left (Tab. 11) and the total number of entries was reduced from 

68,630 to 4,785. 

Class Area (m2) Number of fields 

Other cereals and cash crops 235034 16 

Non-cultivated land 9337868 1642 

Greenhouses & rural buildings 2550718 271 

Nurseries 273768 18 

Woods 4015671 563 

Winter cereals for forage 131442 14 

Mixed herbages 501855 43 

Silo maize 5407821 297 

Alfalfa 825456 105 

Mixed meadows 2630208 285 

Pastures 1008300 89 

Rice 866544 89 

Maize  10001690 669 

Soybean 1796109 194 

Tree crops 1799739 215 

Tomato 364185 20 

Winter cereals   2707555 255 

Tab. 11 - The 17 classes selected from the original dataset 

 

The total area and the number of fields per class were calculated on the dataset before and after the 

cleaning procedure described (Figs. 17-18). 
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Fig. 17 - Area and number of fields per class; calculation performed on the dataset before the cleaning procedure 

 

 

Fig. 18 - The area and number of fields of the 17 classes selected 

 

It is worth noticing that both before and after the cleaning of the dataset, the classes “Maize for grain” and 

“Silo maize” are among the 4 most important classes for area and number of fields, thus confirming that 

the agriculture in the area is quite industrial and livestock-oriented; the result is also consistent with the 

observations of (Azar et al., 2016) and (Villa et al., 2015). The position of “Non-cultivated land” is as well 
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remarkable: the class aggregates land not under production with fallow land, so it is not possible to 

quantify the problem of farmland abandonment. 

 

   

 

 

 

Fig. 19 – Workflow of the procedure used to select the training and the validation dataset starting from the original reference data 

 

3.2.6 Classification 

Given the availability of training and validation data, a supervised classification was performed: the study 

area was classified with the Random Forest (RF) classifier (Breiman, 2001), given its several advantages and 

the better performances in comparison to other classification algorithms. The RF models were built in R (R 

Core Team, 2016) with the package “randomForest”(Liaw & Wiener, 2002), using the training and 

validation datasets as described above.  

To compare the performance of the single VIs and of a combination of VIs, different Random Forest models 

were built: some based on the PMs derived from single VIs; one based on the PMs derived from multiple 

VIs. Only the VIs and the PMs selected in the previous step, with means of the visual and statistical 

analyses, were used.  

It was not possible to train all the models for all the selected classes: indeed, the PMs were not calculated 

over all the pixels of the study area, but only on the ones that had a positive quality flag. This decreased the 

number of pixels and polygons used for the construction of the model, leading also to a slight reduction in 

the number of classes. 
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The accuracy of the models was evaluated with a confusion matrix. Omission and Commission Errors were 

considered in relation to the single classes, while the Overall Accuracy was used to compare the 

performance of the models: the model yielding the highest Overall Accuracy was used for the classification 

of the study area, which was done employing the R package “raster” (Hijmans, 2016). 

 

3.2.7 Integration of the classified map in the agro-ecological zonation 

Land cover information can be integrated into agro-ecological zonations in two ways: 

- As an input variable (van Beek et al., 2016); 

- As a descriptor layer (Mücher et al., 2016). 

Applying the approach of GAES, the crop map was integrated into the chosen AEZ in the form of a 

descriptor layer. The LoPCZ was used in this step, since it has a good level of detail, it is built on both 

climatic and pedological features and it was specifically conceived for the issue of nitrate pollution. The 

integration was done with these 3 steps: 

1. Intersection: the classified map was divided into smaller areas corresponding to the extension of 

the existing agro-ecological zones; 

2. Overlay: the classified map and the agro-ecological zonation were superimposed; 

3. Computation of statistics: the percentage cover of each crop type in each zone was calculated and 

kept as a descriptor of the zone. 

The procedure allowed to create an agro-ecological map enriched with crop type information. 
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4. Results and discussion 

4.1 Results 

4.1.1 Visual assessment of the performance of the VIs 

The NDVI, EVI, SAVI and MSAVI were visually tested; Fig. 20 shows the temporal profile of 4 indices sampled 

on a random pixel of a summer crop. 

 

Fig. 20 – Sample temporal profiles of EVI, SAVI, NDVI, MSAVI and TCG  

 

It can be seen that the TCG is extremely smooth, showing a very little amplitude. On the contrary, the 

MSAVI is quite rough (see for instance the rapid increase around the 12th of May). Moreover, it had in some 

cases a behaviour difficult to interpret: Fig. 21 shows 

the case of a pixel in which the peak of the MSAVI is 

very shifted in comparison to the peak of the other 

indices. 

 

Fig. 21 - Comparison of the peak of different VIs 

 

 

The three indices that kept the fluctuations in the signal without exaggerating or smoothing them were the 

NDVI, the EVI and the SAVI. The sensitivity of the 3 indices to phenological changes was similar, as 

demonstrated by the case of maize and silo maize: all the VIs presented a higher decreasing rate for silo 

maize than for maize (Fig. 22). This is due to the fact that silo maize is harvested when still green (at the 
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kernel dough stage), while maize for grain production remains on the field for a longer period and it is 

harvested when already dry. 

 

Fig. 22 - Senescence rate of NDVI, SAVI, MSAVI and TCG for maize and silo maize 

 

Among the three indices, the NDVI has always got higher values than the other two.  

The behaviour of the EVI is interesting: usually it follows the trend of the other two indices, but in some 

cases it shows differences. For instance, considering the case of a random temporal profile of a mixed 

meadow (Fig. 23), it can be seen that it 

completely misses the second growth cycle and 

the second cut of the year, between May and 

June, while the NDVI and the SAVI are able to 

detect them. 

 

Fig. 23 - The temporal profile of a mixed meadow, 

calculated with NDVI, SAVI and EVI 

Finally, the SAVI behaves similarly to the other indices in the case of medium-high levels of vegetation 

cover (e.g. temporal profiles of maize or soybean); its capacity to represent the crop growing cycle is more 

apparent on pixels which do not have a good and uniform vegetation layer, for instance in the case of non-

cultivated land. 
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4.1.2 Assessment of the performance of the PMs 

The PMs were calculated over the entire study area. Fig. 24 shows, as an example, the Duration Of Season 1 

in Muzza, as calculated with EVI. 

Fig. 24 - The Duration Of Season 1 in Muzza, as 

calculated with EVI 

 

The PMs were evaluated according to 

different criteria: their variability, held as 

an indicator of their ability to distinguish 

among crops; their meaning in relation the 

biophysical characteristics of the crops; 

their detection in relation to other PMs. 

In particular, the following observations were made about the calculated PMs: 

1. VI value at the Start Of Season (SOS), at the Start of the Growing Season (SGS), at the End Of the 

Growing Season (EGS) and at the End Of Season (EOS): the intra field variability was found to be quite 

high. For instance, within one field, the EVI value at the SOS can vary up to 0.74. The SAVI value at the 

SGS within a single field was found to vary up to 0.64. Similar observations are valid for the NDVI, 

which has got a maximum intra-field variability of 0.84 at the EGS and of 0.11 at the EOS.  

2. Dates of the Start Of Season, Start of Growing Season, End Of Season, End of Growing Season: in many 

cases, the Start Of Season and the Start of the Growing Season were detected on the same date; the 

same was observed for the End Of Season and the End of the Growing Season. These metrics are 

essential to distinguish summer from winter crops. 

3. Dates of the Maximum Growth Rate (MGR) and Maximum Senescence Rate (MSR): much intra-field 

variability was observed for these metrics as well. The range of days in which the MGR and the MSR 

are detected were calculated per field. Tab. 12 shows the minimum and maximum range found across 

all the fields, according to the different indices: the NDVI is the one showing highest variability, but 

also the EVI and the SAVI are very variable. 

4. Number of Growing Seasons: it helps in distinguishing fields which have one crop throughout the year, 

from fields which have a crop succession. 

5. VI value in the peak date: it helps in distinguishing crops that produce very high amounts of biomass 

from crops that do not produce much. 
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 EVI NDVI SAVI 

Mean intra-field difference in the detection of the MGR (days) 73 102 84 

Mean intra-field difference in the detection of the MSR (days) 74 85 80 

 

Tab. 12 - Maximum and minimum intra-field variability in the detection of the date in which the Maximum Growth Rate (MGR) and 

the Maximum Senescence Rate (MSR) occur, according to EVI, NDVI and SAVI 

 

As for the remaining metrics, they were found to be quite consistent with the expected crop characteristics.  

Following the observations made about the PMs, the following 8 metrics were excluded from the analysis 

for the explained reasons:  

- VI value at the SOS, SGS, EOS and EGS: the information contributed by these metrics was not 

fundamental, since it was quite variable and very dependent from the correct detection of the date; 

- date of the SOS and of the EOS: since the SOS and the SGS were found to be the same in several cases, 

the SOS was excluded from the analysis; the same reasoning was applied for the EOS; 

- date of the MGR and of the MSR: this information was not considered extremely important, because 

quite variable. 

The remaining 11 metrics were kept (Tab. 18), since no negative observations were made. 

PMs kept for the classification 

Number of Seasons 

Start of Growing Season 

End of Growing Season 

Date of the peak 

VI value at the peak 

Amplitude 

Maximum Growth Rate 

Maximum Senescence Rate 

Duration of Season 

Length of Maturity Plateau 

Seasonal Time Integrated Index 

Tab. 18 - PMs used in the classification 
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4.1.3 Statistical analysis of VIs and PMs 

The first metric to be checked was the Number of Growing Seasons (NGS) detected in each pixel. The 

correct detection of the NGS is fundamental, because if the growing cycle of a crop is split into more than 

one growing cycle, all the PMs will be affected. In turn, the quantification of the NGS is related to the 

detection of the Start and End of the Growing Seasons. The pixels investigated are supposed to have only 

one crop, therefore one growing cycle. All the indices miscalculated the NGS in part of the pixels; however, 

the EVI was the one misclassifying the least number of pixels, while NDVI and SAVI gave worse results, 

especially for what concerns some specific classes (e.g. tomato).  

 

Fig. 25 - Number of growing seasons, per class, as detected by EVI, NDVI and SAVI 

The statistical distribution of the peak value shows that the NDVI tends to have higher frequencies around 

precise values, slightly different for each class; the EVI and the SAVI, instead, do not have such a clear trend 

(Fig. 26).  

 

Fig. 26 - Peak values of season 1 calculated with EVI, NDVI and SAVI, per class; all the VIs are on a scale factor of 10000 
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This is particularly true for some classes, for instance tree crops (Fig. 27). However, when looking at classes 

with similar amounts of maximum biomass, the NDVI does not seem to differentiate well: for instance, the 

statistical distributions of the peak value for soybean and for maize or 

silo-maize are very similar when calculated with the NDVI; the EVI and 

the SAVI, on the other hand, clearly show a higher peak value for 

soybean in comparison to maize and silo-maize (Fig. 28).  

 

Fig. 27 - The Peak Value for the Tree Crops class, according to different VIs; from 

above: EVI, NDVI, SAVI. All the VIs are on a scale factor of 10000 

 

 

Fig. 28 - Comparison among the peak values of SAVI, NDVI and EVI, for the classes of soybean, silo maize and maize; all the VIs are 

on a scale factor of 1000 

 

Finally, for some PMs there are no apparent differences among the VIs. When observing the statistical 

distribution of the Amplitude, for instance, the general trend of the three indices is similar, except for the 

NDVI showing a bi-modal distribution for some classes (Fig. 29).  

 

Fig. 29 - The amplitude of season 1, per class, as calculated with EVI, NDVI and SAVI 
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All the indices can distinguish between two macro-categories: 

on the one hand, there are herbages, meadows, pastures and 

non-cultivated land with a small amplitude; on the other 

hand, there are cash crops with a high amplitude. Distinctions 

within the macro-categories is more difficult, but some 

classes are distinguishable: soybean shows an amplitude 

higher than maize and silo-maize, when calculated both with 

the EVI and the SAVI. 

 

Fig. 30 - The amplitude of soybean, maize and silo maize as calculated by 

EVI, NDVI and SAVI; all the VIs are on a 10000 scale 

 

 

4.1.4 Segmentation and classification 

After the intersection of the segmentation and the parcels and the selection of polygons and classes to use, 

4 classes were discarded, leaving 13 classes for the classification.  

 

Class N. of fields Area (m2) 
Tomato 12 266272 

Mixed herbages 11 336282 

Alfalfa 20 385383 

Rice 16 443009 

Pastures 20 555508 

Tree crops 36 960139 

Soybean 34 1070607 

Mixed meadows 56 1275094 

Winter cereals   62 1594442 

Woods 72 1955710 

Non-cultivated land 152 3447477 

Silo maize 143 3910557 

Maize 211 6599894 

Other crops 32047 489623513 

Tab. 13 - The final 14 classes used for the classification 

 

The following 4 Random Forest models were built: 

1. NDVI PMs-based RF; 

2. EVI PMs-based RF; 
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3. SAVI PMs-based RF; 

4. EVI, NDVI and SAVI PMs-based RF (from now on referred to as ‘E-N-S PMs-based model’). 

The number of classes that each model could predict is reported in the table below. 

 N. of classes included 

in the model 

EVI 12 

NDVI 11 

SAVI 11 

E-N-S 10 
 

Tab. 14 - The number of classes employed in the construction of the 4 Random Forest models 

 

The results were evaluated with the use of confusion matrices, reported in Appendix 8.  The main findings 

are discussed here.  

Tab. 15 shows that the best classified classes in terms of OE were “Other crops”, “Tomato”, “Soybean” and 

“Winter cereals”; the best classified classes in terms of CE were “Other crops” and “Pastures”. In several 

cases, the OEs and CEs were as low as 0. 

 

 EVI NDVI SAVI E-N-S 

OE CE OE CE OE CE OE CE 

Other crops 0.02 0.00 0.02 0.00 0.03 0.01 0.00 0.00 

Tomato 0.14 0.00 0.22 0.00 - - - - 

Soybean 0.23 0.89 0.21 0.85 0.23 0.88 0.15 0.28 

Winter cereals 0.21 0.70 0.21 0.57 0.23 0.81 0.11 0.07 

Pastures 0.19 0.13 0.32 0.47 0.17 0.20 0.00 0.00 

Tab. 15 - OEs and CEs of the best classified classes, across the 4 RF models tested 

 

The classes with the highest OEs were “Non-cultivated land” and “Silo maize”; the classes with the highest 

CEs were “Woods”, “Mixed herbages”, “Soybean” and “Winter cereals” (Tab. 16). Generally, these classes 

show errors between 0.7 and 0.9, however in many cases the class is completely misclassified. 

 EVI NDVI SAVI E-N-S 

OE CE OE CE OE CE OE CE 

Non-cultivated land 0.30 0.71 0.36 0.64 0.32 0.64 0.03 0.05 

Silo maize 0.28 0.74 0.32 0.78 0.27 0.78 0.08 0.04 

Woods - - 0.00 0.67 1.00 1.00 - - 

Mixed herbages 0.26 0.81 1.00 1.00 1.00 1.00 0.00 0.35 

Soybean 0.23 0.89 0.21 0.85 0.23 0.88 0.15 0.28 

Winter cereals 0.21 0.70 0.21 0.57 0.23 0.81 0.11 0.07 

Tab. 16 - OEs and CEs of the worst classified classes, across the 4 RF models tested 
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Finally, the differences in OEs and CEs across classes were compared, with almost all the model having 

extremes of 0 and 1:  

 OE CE OA 

Lowest Highest Median Lowest Highest Median (%) 

NDVI PMs – based RF 0.00 1.00 0.22 0.00 1.00 0.64 98 

EVI PMs – based RF 0.02 1.00 0.23 0.00 1.00 0.72 98 

SAVI PMs – based RF 0.03 1.00 0.23 0.01 1.00 0.78 97 

E-N-S PMs– based RF 0.00 0.15 0.05 0.00 0.65 0.04 93 

 

Tab. 17 - Highest and lowest OEs and CEs of the 4 RF models tested 

 

All the models presented both good and bad OEs and CEs, while the OAs were similar (97-98%): the only 

exception is represented by the E-N-S model, which shows a slightly lower OA (93%). The NDVI and the EVI 

PMs-based RF showed the highest OAs; to choose one model between these two, also the CEs and the OEs 

were considered, thus leading to the choice of the NDVI PMs-based RF, which was used to produce the final 

classified map (Fig. 31). 

 

 

Fig. 31 - Classification of the study area, performed employing the NDVI PMs-based Random Forest classifier 
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According to the final classification, the greatest part of Muzza is covered by non-cultivated land, maize and 

silo maize. Other important crops are: mixed meadows, soybean, winter cereals and rice.  Non-cultivated 

land seems to be uniformly 

distributed across the study area, 

as well as maize, while rice fields 

are concentrated in the South-

West part of Muzza, between Lodi 

and Pavia.  

 

Fig. 32 - Area of the classified crops in 

Muzza 

 

4.1.5 Integration of the classified map into the agro-ecological zonation 

The classified map of the crop types in Muzza was integrated into the LoPCZ, as a descriptor layer (Fig. 33). 

 

Fig. 33 - The two agro-ecological zones of Muzza, with the 5 most common crops found in each zone 

According the LoPCZ, two agro-ecological zones can be found in Muzza: the Western Plain and the Central 

Plain. The vegetation cover in the two zones was characterized, by assessing the extension of the crops 

classified in the previous step, as shown in Figs. – and --. The Central Plain was found to have a higher 

percentage of non-cultivated land (54%), while in the Western Plain the cultivation of maize is more 

common (27%, against the 18% of the Central Plain). The distribution of crop requiring low doses of N 
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fertilizer was analysed, aggregating the data of soybean, pastures, mixed meadows, alfalfa and mixed 

herbages. In both zones the percentage area covered by these crops is around 18%. 

 
Fig. 34 - Crops found in the Western Plain zone of Muzza according to the classification performed: percentage area of the 

classified crops 

 

 
Fig. 35 - Crops found in the Central Plain zone of Muzza according to the classification performed: percentage area of the 

classified crops 
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4.2 Discussion 

4.2.1 General analysis of VIs and PMs 

The smooth behaviour of the TCG observed in this study was reported also by (M. Schultz et al., 2016), who 

observed over forested areas a rather stable signal with a slight change when deforestation occurred. 

However, the harvest of a crop is not comparable to deforestation, in terms of magnitude of change; 

moreover, in some cases crop residues are left on the field, thus making the change in the signal less 

evident than the change from dense vegetation to bare soil. Even if the same study reported a variable 

behaviour of the TCG in different ecosystem types, the TCG did not prove well in our case, neither on 

agricultural fields nor in woodland, being not sensitive enough to the small phenological changes. 

The behaviour of the MSAVI can be explained with the presence of a soil parameter, L, which is dependent 

on the soil line, calculated in the NIR-Red space. A unique soil parameter was used to calculate the MSAVI 

over the whole area, because accounting for the soil variability would make the calculations too complex. 

However, (Aa. Vv., personal communication, 2016) have shown that Muzza has got at least two types of soil 

that are quite different in texture and therefore in moisture and spectral reflectance. The spatial variability 

in soil moisture could explain as well the behaviour of the MSAVI, since VIs are also influenced by this factor 

(Zhang, Zhang, Shi, & Huang, 2014). Moreover, the temporal interpolation may have not smoothed the 

normal spiky trend of the index.  

The high values of NDVI in comparison to the EVI and the SAVI were to be expected, since the NDVI is 

known to saturate very quickly (Jackson et al., 2004) (Chen, Fedosejevs, Tiscareno-Lopez, & Arnold, 2006) 

(Asner, Scurlock, Hicke, Scurlockt, & Hicket, 2003). However, the NDVI was anyway able to detect the most 

interesting changes throughout the growing cycle, thus confirming the findings of (Vina et al., 2012), who 

observed that it is sensitive enough to distinguish between the senescence rate of two hybrids of maize. 

The behaviour shown by the EVI over the sample meadow pixel is quite unexpected, since other authors 

found that EVI outperforms NDVI in the detection of meadows (Halabuk, Mojses, Halabuk, & David, 2015). 

Shen, Chen, Zhu, Tang, & Chen (2010) documented lower values of NDVI and EVI during the flowering 

period; meadows can be cut around the flowering stage, and this could explain the low value of the EVI, but 

not the difference between the EVI and the NDVI. In addition to this, the EVI is calculated using the Blue 

band, which is highly influenced by atmospheric aerosol and clouds: consequently, atmospheric effects can 

alter the actual EVI value, but they are difficult to account for. In conclusion, the behaviour of the EVI is in 

some cases difficult to predict and understand; however, the index shows satisfactory results in overall.  

Finally, the capacity of the SAVI to represent the growth of wild plant on non-cultivated land can be quite 

important. Pixels of non-cultivated land represent a challenge for the classification, since rarely they are 
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represented by bare soil, and most often they have a not well-characterized vegetation layer; thus, the LSP 

and the amount of biomass of these pixels are not similar to the ones of crops. This difference is difficult to 

detect with the NDVI, because it saturates quickly and does not distinguish between the high amount of 

biomass of most crops and the medium amount of biomass of the varied vegetation growing on non-

cultivated land. Fig. 36 illustrates the behaviour of NDVI in comparison to EVI and SAVI on one pixel of non-

cultivated land. The NDVI is the only index showing a regular fluctuation in the signal, more similar to the 

temporal profile of a crop with a short growing cycle (e.g. tomato). The EVI and the SAVI, instead, present a 

non-regular temporal profile, more coherent with the expected vegetation cover.  

 

 

Fig. 36 - Temporal profile of EVI, NDVI and SAVI over a pixel of non-cultivated land 

 

In conclusion, the TCG and the MSAVI were discarded because of their extreme behaviour. The NDVI, the 

SAVI and the EVI, instead, were included in the following steps of the analysis: even if they have some 

limitations, they have the potential of overcoming them by complementing each other. Some studies (e.g. 

(M. Schultz et al., 2016)) suggest that the integration of different VIs leads to a higher classification 

accuracy.  

 

4.2.2 Statistical analysis of VIs and PMs 

The behaviour shown by the NDVI in the detection of the peak, which tends to be concentrated towards 

high values, is due to the fact that it saturates more easily. This can be an advantage when classifying crops 
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with very different amounts of biomass (e.g. tomato and tree crops), but it does not provide good results 

when working with crops with similar amounts of maximum biomass. 

The difference in Amplitude observed for all the VIs between forages and cash crops is easily explained with 

the biological characteristics and the agronomic practices related to the two categories. The Amplitude is 

calculated as the difference between the VI value at the peak and the VI value at the Start of the Growing 

Season. Herbages have “normal” VI values at the SGS, but they show low peak values. Meadows and 

pastures have “normal” peak values but tend to have higher VI values at the SGS: this happens because the 

plants stay on the field for more than one year; they are periodically cut above the root collar, with a 

frequency of 1-2 months during spring and summe, and then they fast grow back to be cut again. The 

cultivation of cash crops, instead, follow different rules: before the sowing, the soil is bare, so the VI value 

at the SGS is low; the maximum amount of biomass of these crops is usually very high, so the VI value at the 

peak is high as well.  

In conclusion, results show that there is not one index always performing better than the others, but rather 

that each index has a different performance for each phenological metric. This confirms the hypothesis that 

a combination of VIs might identify crops more accurately than a single VI. 

 

4.2.4 Classification 

The best classified classes in terms of OE were “Other crops”, “Tomato”, “Soybean” and “Winter cereals”; 

the best classified classes in terms of CE were “Other crops”, “Pastures” and “Maize”: this can be explained 

with features of these classes that are quite unique and not easily confusable. Indeed, winter cereals are 

almost the only crop, among the selected ones, that grows during the winter. Pastures show a typical 

oscillatory temporal profile. The temporal behaviour of pastures can also be observed in tomatoes, with 

some differences in the growth and senescence phases. Thus, also the results achieved for tomatoes are 

good: some vegetables (e.g. onions, carrots) are difficult to classify, due to their short growing cycle, their 

flexible calendar and their irregular temporal profile, as observed by Zhong, Hawkins, Biging, & Gong 

(2011); conversely, tomatoes stay on the field for a longer period because of their progressive ripening. 

Probably, this characteristic probably makes them more easily recognizable. Soybean shows good OEs but 

high CEs, meaning that all the fields with soybean were classified as such, but also some non-soybean fields 

were included in this class: this happened mostly with pixels of non-cultivated land, and in some cases with 

fields of silo maize, which is reasonable given the similarity of their growing cycles.  

“Non-cultivated land” and “Silo maize” showed the highest OEs. Silo maize was mostly classified as “Other 

crops”, while misclassified pixels of non-cultivated land were in many cases labeled as “Other crops”.  The 
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classes with the highest CEs were “Woods”, “Mixed herbages”, “Soybean” and “Winter cereals”: in most 

cases, all these classes included pixels of non-cultivated land or of other crops.  

It is clear that the classes of “Non-cultivated land” and of “Other crops” represent a disturbing element: the 

cause is most likely the absence of precise phenological features. Indeed, non-cultivated land may include: 

long-abandoned fields, in which little vegetation grows; fallow land, in which some seeds of previous crops 

germinated and grew to normal plants; fallow land, on which weeds grow; abandoned land on which 

natural vegetation grows. Of course, all of them show different Land Surface Phenologies. In addition to 

this, Prishchepov, Radeloff, Dubinin, & Alcantara (2012) observe that vegetation successions can vary 

considerably between marginal and non-marginal land and between arable land and grassland, thus 

producing different temporal profiles. The same is valid for the class “Other crops”, that gathers very 

different crops, from minor grains to vegetables, thus having much intra-class variability. It is likely for a 

pixel of sorghum, labeled as “Other crops”, to be classified as “Soybean”, since the two crops have similar 

growing cycles.  

Finally, the differences in OEs and CEs across classes of the same model are noticeable: in the same model, 

there are always classes that are detected very well and others that show a very low degree of accuracy. 

This leads to the hypothesis that the characterization of the classes is as important as the classification 

algorithm. The characterization of the classes occurs through two steps:  

1. The choice of the classification variables: for instance, the most important difference between 

maize and soybean may be the date in which the peak is reached, while the other phenological 

variables may be very similar; if the classification algorithm is based on all the phenological 

variables except the peak date, the two crops will be most likely confused. This could explain the 

poor results obtained by Azar et al. (2016) and Inglada et al. (2015), who employed the temporal 

profile of reflectances and VIs but no PMs. Hence, the variability in classification accuracy across 

the classes found in our study could be explained in this way: the variables chosen could 

characterize well some classes, but were not enough for other classes. 

2. The choice of the training samples: both the quality and the size of the training sample are 

important, since they are related to the intra-class variability. In this study, the training and 

validation datasets were represented by the data registered by farmers, which are not always 

reliable. Moreover, it could be argued that the threshold of 10 fields per class, set in this study, was 

too low to represent the intra-class variability of some classes. 

Summarizing, in the classification process some classes can be identified more easily than others, due to 

distinctive features of their growing cycles that were captured through the chosen variables. However, the 

accuracy in the detection of these classes can be affected by the presence of other, non-well-defined 
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classes. The high intra-class variability of some classes negatively affects the whole classification, as 

demonstrated by the case of “Non-cultivated land” and “Other classes”. 

 

Comparing the 4 RF models tested, other observations can be made. Among the models based on single VI 

PMs, the NDVI PMs - and the EVI PMs-based models performed comparably. The higher OE and CE median 

values of the EVI indicate that this index, in comparison to the NDVI, has a tendency to underestimate or 

overestimate the number of fields belonging to certain classes. Halabuk et al. (2015), working with MODIS- 

derived EVI and NDVI temporal profiles, observed similar results for the classification of cut and uncut 

meadows: the two indices yielded similar results, but the NDVI performed better. On the contrary, in our 

case the EVI gave better results than the NDVI for the classification of pastures and mixed meadows, but 

had slightly worse results considering all the classes. The reasons could be several: in the first place, the 

spatial and temporal resolutions of the two sensors are different and may affect significantly the results; in 

the second place, even if in both cases a temporal approach is used, the variables employed are not the 

same; finally, the different pre-processing steps may influence the temporal profiles tested. This 

comparison demonstrates that when dealing with classification, the pre-processing steps and the variables 

employed are as important as the general approach.  

The SAVI PMs-based RF shows OEs and CEs higher than those of EVI and NDVI. Unfortunately, no studies 

were found in which the SAVI was used to monitor crop phenology, thus no comparison is possible. The 

only possible hypothesis is that the soil component in the index negatively affects its performance in the 

PMs detection. Indeed, the index may provide good results when the soil characteristics are well-defined, 

for instance at the field level; but when working over larger areas, soil variability is inevitable and difficult 

to account for. Thus, the soil variability of the study area may have altered the performance of the index. 

Finally, the performance of the E-N-S PMs-based RF may appear strange, since OEs and CEs are very low, 

but the OA is the lowest among the 4 models. There may be two reasons explaining it: in the first place, the 

E-N-S PMs-based model was built on a low number of training fields, since the pixels needed to have a 

positive quality flag for all the 3 VIs. So, the E-N-S PMs-based RF is built on a smaller training dataset then 

the other 3 models: it is known that the size and quality of the training dataset influences the classification, 

and this may be the case. Secondly, it is true that increasing the number of variables the classification 

improves: however, this is true only up to a certain limit, after which the classification accuracy does not 

increase nor decrease (Lebourgeois et al., 2017). These results suggest that rather than increasing the 

number of classification variables, a careful choice of the 3 VIs variables should have been done to reduce 

the redundancy of the information. 
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According to the final classification, the most common crops in the area are maize, silo maize, mixed 

meadows, soybean, winter cereals and rice; non-cultivated land is much spread on the territory as well. 

This data agrees with the statistical analysis performed on the reference data of the Province of Lodi. 

 

4.2.5 Integration of the classified map into the agro-ecological zonation 

It has already been shown that AEZs have been used for environmental purposes, for studying nutrient 

dynamics (Geurts & Berg, 1998) and for fertilizer recommendations (Smaling, 1993). The Nitrate Vulnerable 

Zones, as defined by the Nitrate Directive, can be considered themselves agro-ecological zones used for N 

fertilizer recommendations and limitations. 

However, none of these zonations include crop type information. Following, the usefulness of integrating 

crop type information into agro-ecological zonations will be discussed.   

From the analysis of the most common crops in the two pedo-climatic zones of Muzza, three major 

observations came to light: 

- non-cultivated land: in the Central Plain the amount of non-cultivated land is higher;  

- maize: more maize is cultivated in the Western Plain in comparison to the Central Plain; 

- crops with low N requirements (soybean, pastures, mixed meadows, alfalfa, mixed herbages): their 

area was found to be low in both zones. 

This crop type distribution on the territory may have several implications.  

Firstly, non-cultivated land seems to be quite widespread. In the classification process, it was not possible 

to differentiate among abandoned land, fallow land and land covered by cover or catch crops. The presence 

of cover and catch crops prevents N leaching, that can lead to the aquifer pollution. However, not the same 

can be said about fallow and abandoned land. If the amount of fallow land is high, it would be advisable to 

encourage the use of cover and catch crops, to strengthen the efforts made to prevent N pollution. As for 

abandoned farmland, the situation is not as clear. It has been proved that farmland abandonment 

influences several environmental processes. (MacDonald et al., 2000) investigated the topic over several 

sites in Europe, showing the negative effects on biodiversity, landscape, soil quality and natural hazards. On 

the other hand, (Knops & Tilman, 2000) proved that the N stock in the soil tends to increase after farmland 

abandonment. So, it is not yet clear what are the effects of farmland abandonment on the quality of soils 

and on nutrient dynamics. However, the diffusion of non-cultivated soils in the Central Plain of Muzza 

suggests that more detailed assessments should be made, to avoid negative consequences on N pollution.  

Secondly, the diffusion of maize in the Western Plain suggests that this zone is potentially more vulnerable 

to N pollution than the Central Plain. Indeed, maize requires high doses of N fertilizers (Baldoni & Giardini, 



 

67 

 

2001): depending on how farmers manage the fertilization process, the potential of N pollution may be 

very high. Indeed, the use of slow release fertilizers or the division of the fertilizer dose into 2-3 sub-doses 

distributed across the growing season increases the amount on N absorbed by the plant and decreases the 

amount of N leached through the soil. However, these practices are expensive and it cannot be assumed 

that all the farmers apply them. This case shows that the crop type helps in defining the N pollution risk 

across zones, but that having an additional layer of information regarding farm management could improve 

the zonation even more. 

Thirdly, only a small share of land is dedicated to forage and legume cultivation, suggesting that not many 

farmers adopt legume-based rotations. It is acknowledged that legumes help in the maintenance of soil 

fertility (Baldoni & Giardini, 2001) and that their cultivation should regularly be included in rotations: 

indeed, their residual effects on soil fertility reduce the amount of N fertilizer needed for the next crop in 

the succession (Mayer, Buegger, Jensen, Schloter, & Heß, 2003). It can be hypothesized that farmers drop 

legumes cultivation because it’s more profitable to cultivate cash crops and buy concentrate feeds for the 

livestock, instead of self-producing fresh forage. It is desirable that limitations imposed by policies also 

orient the farmers towards new farm management strategies, but this is not always the case (Macgregor & 

Warren, 2006) and apparently Muzza farmers did not respond in this way. Moreover, it has been argued 

that the limitations imposed by the Nitrate Directive may not serve the final scope (Belhouchette et al., 

2011). Consequently, decision-makers could consider the option of encouraging the cultivation of more 

legumes, targeting the agro-ecological zones where the risk of N pollution is higher. 

Finally, it must be underlined that to elaborate an efficient strategy for N pollution management, the crop 

type information should be considered in relation to pedo-climatic parameters. Indeed, variables like the 

total amount of precipitations, the distribution of precipitations across the growing season or the soil 

texture influence the movement of N fertilizers along the soil profile up to the aquifer. It is not possible to 

do such a global reasoning in the present research, since the pedo-climatic characteristics of the chosen 

zones are not available. Nonetheless, such an approach is advisable.  

 

4.3 Conclusions 

In this study, I investigated the usefulness of employing VI-derived Phenological Metrics for crop 

classification and the meaning of integrating satellite-derived crop type information into agro-ecological 

zonations. The main conclusions are as follows: 
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§ The integration of crop type information into an AEZ represents a valuable improvement and can be 

contribute relevant territory information, especially if the interrelations among crop types and pedo-

climatic parameters are considered. 

§ In multi-temporal analysis, the TCG and the MSAVI do not contribute significant information because 

of their extreme behaviour, which tends to smooth or exaggerate the changes occurring in 

vegetation. The NDVI, the EVI and the SAVI, instead, appear to keep the characteristics of the most 

important phenological stages. 

§ It is known that it’s impossible to detect from satellite remote sensing all the phenological stages 

that are fundamental from an agronomic point of view. Among the PMs that can be detected, 

differences were found: some of them are quite class-specific, others do not differ much across 

classes; some are easily detectable, others are very difficult to define with precision. This suggests 

that more research on PMs is advisable, with the objective of finding easily-detectable PMs able to 

characterize the growing cycle of different crops. 

§ VIs perform differently in the detection of the PMs: EVI shows better results in determining the 

number of seasons, NDVI in the peak value; in the determination of the amplitude, EVI, NDVI and 

SAVI performed comparably.  

§ The accuracy in the classification of single crops depends on several factors:  

- classification variables, which should be able to catch the characteristic features of each crop: 

the peculiar growing cycle of tomato made its classification accurate;  

- variability in the real features of each crop: the different characteristics of the vegetation 

growing on non-cultivated land made this class not well-characterized and therefore detectable; 

- intra-class variability: the high values of the classes “Other crops” and “Non-cultivated land” 

affected negatively the Omission Errors of several other classes; 

- quality and quantity of the training samples: the nature of the dataset used, which wasn’t 

validated on the field, may have affected negatively the results. 

§ The Random Forest classification performed with NDVI and EVI PMs gave similar results, with the 

former having slightly better results than the latter; the outcome of the SAVI PMs-based 

classification, instead, was less satisfactory.  

§ The classification of the study area, overlayed with an agro-ecological zonation, shows that crop 

types differ with agro-ecological zones. 

§ Crop type differences across agro-ecological zones suggest that the strategies to handle N pollution 

deriving from agricultural activities could be diversified.  
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Conclusions 

Through this research, a brief review of AEZs has been done. We have seen that existing global AEZs can 

differ much in input variables, spatial resolution and zone characteristics. These differences can make one 

or the other AEZ more suitable for a specific purpose, but they have one fundamental characteristics in 

common: almost all of them are built on climatic and pedological variables only. This is also true for the 

LoPCZ (Lombardy Pedo-Climatic Zonation), the agro-ecological zonation adopted by the Region Lombardy 

to define the Nitrate Vulnerable Zones and control N pollution deriving from agricultural activities.  

Indeed, a pedo-climatic AEZ can help in detecting areas which are more vulnerable to N pollution (assuming 

that the land cover is the same). But observations about the most common crop types in each zone can 

trigger research and open the way to new inquiries: are crops with high N requirements mostly cultivated 

in highly vulnerable areas? Is it possible to relieve the environmental pressure by changing the cultivated 

crops? Is it advisable to re-define the Nitrate Vulnerable Zones, taking into account the effect of the mostly 

cultivated crops in each area? An AEZ with crop type information is the ideal tool to help experts deal with 

these questions. Consequently, a crop type map of Muzza was produced and later integrated into the 

LoPCZ.  

The crop type map, referred to the crop year 2014-2015, was elaborated with a multi-temporal approach. 

Landsat8 imagery was used to calculate the temporal profile of 3 Vegetation Indices (NDVI, EVI and SAVI) 

and these, in turn, were used to calculate 11 Phenological Metrics (PMs). PMs are metrics able to 

characterize the growing cycle of the crops by detecting some key stages: for instance, the moment in 

which the plant reaches the maximum amount of biomass or the moment in which senescence begins. The 

PMs were used as the input variables for the crop type classification. The key assumption is that even crops 

with similar growing cycles have got some phenological differences and that the PMs are able to capture 

them. Using the RandomForest algorithm and different combinations of variables, 4 classifications were 

performed: 3 using the PMs derived from the single VIs and one combining the PMs derived from all the 

VIs. The 4 produced classifications yielded high Overall Accuracies, thus supporting the hypothesis that VI-

derived PMs are able to characterize the crops growing cycles. In addition to this, the potential of remote 

sensing for crop type mapping purposes was confirmed. The classification yielding the highest Overall 

Accuracy was the one produced with the NDVI PMs: this was used for the integration in the LoPCZ. 

The integration of the crop type map into the LoPCZ opened new perspectives on the N pollution problem, 

revealing significant differences between the zones in terms of crop type. Maize, which requires high N 

fertilization, is more common in one zone, while the other has got more fallow or abandoned land. In both 

areas, the cultivation of legumes and in general of plants that require low N doses is not very common. 

These observations, related to the pedo-climatic characteristics of each zone, can potentially serve for 
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multiple purposes: determining the amount on N fertilizer applied in total in each zone; identifying zones 

with higher risk of N pollution; guiding policy-makers in the choice of the cropping systems to encourage.  

In conclusion, this research showed that systems meant to monitor and control N pollution deriving from 

agricultural activities may greatly benefit from the use of AEZs that include EO-derived crop type 

information.  
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Appendix 1 – GYGA zonation of Italy 

 

 

Fig. 37 - Climate zones of Italy according to GYGA  
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Appendix 2 – GAES zonation of Italy 

 

 

Fig. 38 - Agro-ecological zones of Italy according to GAES 
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Appendix 3 – GEnS zonation of Italy 

 

 

Fig. 39 - Agro-ecological zones of Italy according to GEnS 
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Appendix 4 – HCAEZ zonation of Italy 

 

 

Fig. 40 - Climate zones of Italy according to HCAEZ 
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Appendix 5 – LoPCZ 

 

Fig. 41 – Agro-ecological zones of Lombardy according to LoPCZ 
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Appendix 6 – Crop classes found in the original dataset and crop classes used in this study 
 

 

Aggregated class 
 

 

Class found in the original dataset 
 

 

 

Cereals and cash crops 
 

 

Winter cereals GRANO (FRUMENTO) TENERO 
GRANO (FRUMENTO) TENERO PER LA PRODUZIONE DI SEME 
GRANO (FRUMENTO) DURO 
ORZO 
FRUMENTO SEGALATO (TRITICALE) 
TRITICALE PER LA PRODUZIONE DI SEME 
FARRO 
SEGALE 

Buckwheat GRANO SARACENO 
Other summer cereals CHENOPODIUM QUINOA 

MIGLIO 
PANICO 

Oat AVENA 
Rice RISO 

RISONE TONDO 
RISONE MEDIO 
RISONE LUNGO B 

Sorghum SORGO DA GRANELLA 
SORGO DA GRANELLA USO ENERGETICO 
SORGO PER LA PRODUZIONE DI SEME 

Maize MAIS DOLCE 
GRANTURCO (MAIS) PER LA PRODUZIONE DI SEME 
GRANTURCO (MAIS) DA GRANELLA USO ENERGETICO 
GRANTURCO (MAIS) DOLCE PER LA PRODUZIONE DI SEME 
MAIS DA GRANELLA 

Sunflower GIRASOLE 
GIRASOLE DA GRANELLA 

Soybean SOIA DA GRANELLA 
SOIA - FAVE EFA - AREA DI INTERESSE ECOLOGICO - Colture 
azotofissatrici 
SOIA - FAVE USO ENERGETICO-EFA - AREA DI INTERESSE 
ECOLOGICO - Colture azotofissatrici 

Rapeseed COLZA E RAVIZZONE DA GRANELLA 
RAVIZZONE - SEMI USO ENERGETICO 
RAVIZZONE - SEMI IBRIDI 
RAVIZZONE - SEMI 

Sugar beet BARBABIETOLA DA ZUCCHERO 
Lineseed LINO NON TESSILE 
Cannabis CANAPA GREGGIA O MACERATA 
Other cereals and cash crops ALTRI SEMINATIVI 
 
 

Forages 
 

 

Herbages (1 year) 

Winter cereals for forage ORZO USO ENERGETICO 
ORZO - DA FORAGGIO USO ENERGETICO 
ORZO - DA FORAGGIO ERBAIO IN PUREZZA 
TRITICALE - DA FORAGGIO ERBAIO IN PUREZZA 
TRITICALE - DA FORAGGIO USO ENERGETICO 
GRANO (FRUMENTO) TENERO - DA FORAGGIO ERBAIO IN 
PUREZZA 
GRANO (FRUMENTO) TENERO USO ENERGETICO 
GRANO (FRUMENTO) TENERO - DA FORAGGIO USO ENERGETICO 
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AVENA - DA FORAGGIO USO ENERGETICO 
TRITORDEUM - DA FORAGGIO USO ENERGETICO 

Sorghum for forage SORGO DA FORAGGIO 
SORGO DA FORAGGIO ERBAIO IN PUREZZA 

Mixed herbages ERBAIO MISTO 
ERBAIO DI GRAMINACEE 
ERBAIO DI LEGUMINOSE 

Silo maize SILOMAIS E MAIS CEROSO 
MAIS DA FORAGGIO 
GRANTURCO (MAIS) - INSILATO USO ENERGETICO 

Trifolium alexandrinum TRIFOGLIO PER LA PRODUZIONE DI SEME (SP. TRIFOLIUM 
ALEXANDRINUM L.) EFA - AREA DI INTERESSE ECOLOGICO - Colture 
azotofissatrici 

Vetch VECCIA SATIVA EFA - AREA DI INTERESSE ECOLOGICO - Colture 
azotofissatrici 
VICIA SATIVA L. 
VECCIA 
VECCIA SATIVA ERBAIO IN PUREZZA 
VECCE - DA FORAGGIO EFA - AREA DI INTERESSE ECOLOGICO - 
Colture azotofissatrici 

Annual rye-grass LOLIUM MULTIFLORUM LAM. 
LOIETTO LOGLIO DA FORAGGIO ERBAIO IN PUREZZA 

Soybean for forage SOIA - DA FORAGGIO EFA - AREA DI INTERESSE ECOLOGICO - 
Colture azotofissatrici 

Meadows (2-5 years) 

Alfalfa ERBA MEDICA 
ERBA MEDICA - DA FORAGGIO EFA - AREA DI INTERESSE 
ECOLOGICO - Colture azotofissatrici 
ERBA MEDICA - DA FORAGGIO PRATO PASCOLO IN PUREZZA 
AVVICENDATO  - NON PERMANENTE-efa 

Perennial rye-grass LOIETTO LOGLIO DA FORAGGIO PRATO PASCOLO IN PUREZZA 
AVVICENDATO  - NON PERMANENTE 

Red clover TRIFOGLIO PER LA PRODUZIONE DI SEME (SP. TRIFOLIUM 
PRATENSE L.) EFA - AREA DI INTERESSE ECOLOGICO - Colture 
azotofissatrici 

Mixed meadow PRATO POLIFITA DA VICENDA 
PRATO POLIFITA AVVICENDATO - NON PERMANENTE 
PRATO PASCOLO DI GRAMINACEE AVVICENDATO - NON 
PERMANENTE 
PRATO-PASCOLO 

Pastures (>5 years) 

Pastures PRATO POLIFITA NON AVVICENDATO (PRATO STABILE) 
PRATO POLIFITA NON AVVICENDATO PER ALMENO 5 ANNI 
(SFALCIATO) - PERMANENTE 
PASCOLO CON ROCCIA AFFIORANTE (TARA 50%) 

Other forages TRIFOGLIO 
TRIFOGLIO - DA FORAGGIO EFA - AREA DI INTERESSE ECOLOGICO - 
Colture azotofissatrici 
ALTRE FORAGGERE 
PRATO IN ROTOLO (TAPPETO ERBOSO) 

 

 

Pulses and vegetables 
 

 

Pea PISELLI ALLO STATO FRESCO EFA - AREA DI INTERESSE ECOLOGICO 
- Colture 
PISELLO FRESCO 
PISELLO SECCO 
PISELLI DA ORTO EFA - AREA DI INTERESSE ECOLOGICO - Colture 
azotofissatrici 
PISELLI ALLO STATO SECCO EFA - AREA DI INTERESSE ECOLOGICO - 
Colture azotofissatrici 
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Bean FAGIOLO 
FAGIOLINO 
FAGIUOLO FRESCO EFA - AREA DI INTERESSE ECOLOGICO - Colture 
azotofissatrici 
FAGIOLO EFA - AREA DI INTERESSE ECOLOGICO - Colture 
azotofissatrici 
FAGIUOLO FRESCO 

Lentil LENTICCHIA 
Tomato POMODORO 

POMODORO TONDO ALTRE VARIETA' 
POMODORINO DA MENSA 
POMODORINO 

Zucchini ZUCCHINO 
ZUCCHINO PER LA PRODUZIONE DI SEME 

Lettuce LATTUGA 
Spinach SPINACIO 
Aubergine MELANZANA 
Potato PATATA 
Onion CIPOLLA 
Asparagus ASPARAGO 
Blueberry MIRTILLO 
Leek PORRO 
Garlic AGLIO 
Broccoli BROCCOLO 
Carrot CAROTA 
Blackberry MORA 
Strawberry FRAGOLA 
Raspberry LAMPONE 
Ribes RIBES ROSSO 

RIBES 
Bell pepper PEPERONE 
Chard BIETOLA DA ORTO 
Celery SEDANO 
Basil BASILICO 
Chicory CICORIA O RADICCHIO 
Radicchio RADICCHIO 
Cabbage CAVOLO 
Aronia arbutifolia FRUTTI DELLA SPECIE ARONIA ARBUTIFOLIA 
Melon MELONE 
Watermelon COCOMERO 
Pumpkin ZUCCA 
Other vegetables PIANTE ORTICOLE A PIENO CAMPO 

ALTRE ORTICOLE 
 

 

Trees 
 

 

Tree crops ACTINIDIA 
ALBICOCCO 
ALTRE COLTIVAZIONI LEGNOSE AGRARIE 
ALTRE PIANTE ARBOREE DA FRUTTO 
ALTRE PIANTE ARBOREE DA LEGNO 
CASTAGNO DA MENSA 
CEDRO 
CILIEGIO 
COLTIVAZIONI ARBOREE PROMISCUE (PIU' SPECIE ARBOREE) 
COLTIVAZIONI ARBOREE SPECIALIZZATE 
FICO 
LOTO O KAKI 
LYCIUM BARBARUM (GOJI) 
MELO 
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NOCCIOLO 
NOCE 
PERO 
PESCO 
PIOPPETI ED ALTRE COLTIVAZIONI ARBOREE DA LEGNO - SPECIE 
NON DEFINITA EFA - AREA DI INTERESSE ECOLOGICO - Misure 
forestali 
PIOPPETO 
PRUGNE DA DESTINARE ALLA TRASFORMAZIONE 
SUSINO 
VITE PER UVA DA AUTOCONSUMO 
VITE PER UVA DA MENSA 
VITE PER UVA DA VINO IN ZONA DOC E/O DOCG 
VITE PER VITIGNI SPERIMENTALI 

Tree rows ALBERI IN FILARE 
ALBERI IN FILARE INCLUSO/ADIACENTE AL PRATO PERMANENTE 
(ELEMENTI DEL PAESAGGIO/EFA - AREA DI INTERESSE ECOLOGICO) 
ALBERI IN FILARE INCLUSO/ADIACENTE AL SEMINATIVO 
(ELEMENTI DEL PAESAGGIO/EFA - AREA DI INTERESSE ECOLOGICO) 
ALBERI ISOLATI INCLUSO/ADIACENTE AL SEMINATIVO (ELEMENTI 
DEL PAESAGGIO/EFA - AREA DI INTERESSE ECOLOGICO) 

Woods ALBERI DA BOSCO - SUPERFICI IMBOSCHITE AI SENSI DEL REG.(CE) 
N. 1257/99 MISURA H - ARBORICOLTURA DA LEGNO 
ALBERI DA BOSCO A BREVE ROTAZIONE 
BOSCO 
BOSCO BOSCO MISTO -  EFA - AREA DI INTERESSE ECOLOGICO - 
Misure forestali 
BOSCO DIVERSO DA BOSCO SPONTANEO E/O PREESISTENTE 
BOSCO EFA - AREA DI INTERESSE ECOLOGICO - Misure forestali 
BOSCO MISTO 
CEDUO COMPOSTO 
FUSTAIA MISTA DI CONIFERE E LATIFOGLIE 
GRUPPI DI ALBERI E BOSCHETTI 
GRUPPI DI ALBERI E BOSCHETTI INCLUSO/ADIACENTE AL 
SEMINATIVO (EFA - AREA DI INTERESSE ECOLOGICO) 
GRUPPI DI ALBERI E BOSCHETTI NON INCLUSO/ADIACENTE AL 
SEMINATIVO (EFA - AREA DI INTERESSE ECOLOGICO) 

Other trees ARBORETO CONSOCIABILE (CON COLTIVAZIONI ERBACEE) 
 

 

Other classes 
 

 

Non-cultivated land ALTRA SUPERFICIE NON UTILIZZATA (TERRENI ABBANDONATI 
RIPOSO VOLONTARIO - COLTURE A PERDERE PER LA FAUNA - 
MISCUGLIO DI SORGO 
RIPOSO VOLONTARIO - COPERTURA VEGETALE SEMINATA O 
SPONTANEA 
RIPOSO VOLONTARIO - LAVORAZIONI MECCANICHE INTENZIONE 
DI SEMINA DOPO IL 15 LUGLIO 
RIPOSO VOLONTARIO - SOVESCIO IN PRESENZA DI SPECIE DA 
SOVESCIO O DI PIANTE BIOCIDE 
RIPOSO VOLONTARIO - SUPERFICIE INTERESSATA 
DALL'ESECUZIONE DI INTERVENTI DI MIGLIORAMENTO 
FONDIARIO 
SUPERFICI AGRICOLE NON SEMINATE – DISATTIVATE 
SUPERFICI AGRICOLE RITIRATE DALLA PRODUZIONE TERRENO 
COPERTO DA VEGETAZIONE SPONTANEA-COPERTURA VEGETALE 
SPONTANEA 
SUPERFICI AGRICOLE RITIRATE DALLA PRODUZIONE TERRENO 
NUDO-LAVORAZIONI FUNZIONALI A INTERVENTI DI 
MIGLIORAMENTO FONDIARIO 
SUPERFICI AGRICOLE RITIRATE DALLA PRODUZIONE TERRENO 
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NUDO-LAVORAZIONI PREPARATORIE DEL TERRENO O PER IL 
CONTENIMENTO DELLE INFESTANTI 
TARE E INCOLTI 
USO NON AGRICOLO - AREE NON COLTIVABILI 
USO NON AGRICOLO - FABBRICATI PARCHI 

Minor crops ARUNDO DONAX 
BAMBU GIGANTE 
LAVANDA 
ORTO FAMILIARE 
PIANTE 
PIANTE AROMATICHE 
PIANTE AROMATICHE MEDICINALI E SPEZIE 
TARTUFO 
FIORI E PIANTE ORNAMENTALI IN PIENA ARIA 

Buffer areas FASCE TAMPONE 
FASCE TAMPONE NON RIPARIALI ARBOREE E ARBUSTIVE 
FASCE TAMPONE RIPARIALI ARBOREE E ARBUSTIVE-
INCLUSO/ADIACENTE AL SEMINATIVO (EFA - AREA DI INTERESSE 
ECOLOGICO) 
FASCE TAMPONE RIPARIALI ERBACEE-INCLUSO/ADIACENTE AL 
SEMINATIVO (EFA - AREA DI INTERESSE ECOLOGICO) 
FASCE TAMPONE RIPARIALI ERBACEE-NON INCLUSO/ADIACENTE 
AL SEMINATIVO (EFA - AREA DI INTERESSE ECOLOGICO) 
SIEPI 
SIEPI E FASCE ALBERATE BARRIERE SCHERMANTI-
INCLUSO/ADIACENTE AL SEMINATIVO (ELEMENTI DEL 
PAESAGGIO/EFA - AREA DI INTERESSE ECOLOGICO) 
SIEPI E FASCE ALBERATE INCLUSO/ADIACENTE AL PRATO 
PERMANENTE (ELEMENTI DEL PAESAGGIO/EFA - AREA DI 
INTERESSE ECOLOGICO) 
SIEPI E FASCE ALBERATE INCLUSO/ADIACENTE AL SEMINATIVO 
(ELEMENTI DEL PAESAGGIO/EFA - AREA DI INTERESSE ECOLOGICO) 
SIEPI E FASCE ALBERATE INCLUSO/ADIACENTE ALLA  COLTURA 
PERMANENTE (ELEMENTI DEL PAESAGGIO/EFA - AREA DI 
INTERESSE ECOLOGICO) 

Field boundaries FOSSATI E CANALI INCLUSO/ADIACENTE AL PRATO PERMANENTE 
(ELEMENTI DEL PAESAGGIO/EFA - AREA DI INTERESSE ECOLOGICO) 
FOSSATI E CANALI INCLUSO/ADIACENTE AL SEMINATIVO 
(ELEMENTI DEL PAESAGGIO/EFA - AREA DI INTERESSE ECOLOGICO) 
FOSSATI E CANALI INCLUSO/ADIACENTE ALLA  COLTURA 
PERMANENTE (ELEMENTI DEL PAESAGGIO/EFA - AREA DI 
INTERESSE ECOLOGICO) 
MARGINI DEI CAMPI 
MARGINI DEI CAMPI INCLUSO/ADIACENTE AL SEMINATIVO (EFA - 
AREA DI INTERESSE ECOLOGICO) 
MARGINI DEI CAMPI NON INCLUSO/ADIACENTE AL SEMINATIVO 
(EFA - AREA DI INTERESSE ECOLOGICO) 
MARGINI DEI CAMPI SEMINABILI INCLUSO/ADIACENTE AL 
SEMINATIVO (EFA - AREA DI INTERESSE ECOLOGICO) 

Greenhouses and rural buildings FIORI E PIANTE ORNAMENTALI PROTETTE IN SERRA 
FIORI E PIANTE ORNAMENTALI PROTETTE IN SERRE O TUNNEL 
CALDI 
FIORI E PIANTE ORNAMENTALI PROTETTE IN TUNNEL O ALTRO 
SERRE FISSE 
FABBRICATI AGRICOLI 
PIANTE ORTICOLE PROTETTE IN SERRA 

Nurseries VIVAIO FLORICOLI E PIANTE ORNAMENTALI 
VIVAIO FORESTALE 
ALTRI VIVAI 

Tab. 19 - Crop classes found in the original dataset and crop classes used in this study 
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Appendix 7 – List of Landsat8 images used in this study 
 

Path, Row Year DOY Date 

(day-month) 

Cloud cover (%) 

194, 28 2014 216 4-8 5 

193, 29 2014 225 13-8 90 

194, 28 2014 232 20-8 100 

193, 29 2014 241 29-8 100 

194, 28 2014 248 5-9 95 

193, 29 2014 257 14-9 0 

194, 28 2014 264 21-9 95 

193, 29 2014 273 30-9 60 

194, 28 2014 280 7-10 100 

193, 29 2014 289 16-10 95 

194, 28 2014 296 23-10 0 

193, 29 2014 305 1-11 25 

194, 28 2014 312 8-11 90 

193, 29 2014 321 17-11 100 

194, 28 2014 328 24-11 90 

193, 29 2014 337 3-12 100 

194, 28 2014 344 10-12 0 

193, 29 2014 353 19-12 40 

194, 28 2014 360 26-12 80 

193, 29 2015 004 4-1 0 

194, 28 2015 011 11-1 70 

193, 29 2015 020 20-1 60 

194, 28 2015 027 27-1 100 

193, 29 2015 036 5-2 100 

194, 28 2015 043 12-2 80 

193, 29 2015 052 21-2 100 

194, 28 2015 059 28-2 80 

193, 29 2015 068 9-3 100 

194, 28 2015 075 16-3 100 

193, 29 2015 084 25-3 100 

194, 28 2015 091 1-4 0 

193, 29 2015 100 10-4 90 

194, 28 2015 107 17-4 100 

193, 29 2015 116 26-4 100 

194, 28 2015 123 3-5 90 

193, 29 2015 132 12-5 100 

194, 28 2015 139 19-5 95 

193, 29 2015 148 28-5 0 

194, 28 2015 155 4-6 0 

193, 29 2015 164 13-6 80 

194, 28 2015 171 20-6 2 

193, 29 2015 180 29-6 90 

194, 28 2015 187 6-7 50 

193, 29 2015 196 15-7 5 

194, 28 2015 203 22-7 2 

193, 29 2015 212 31-7 20 
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194, 28 2015 219 7-8 0 

193, 29 2015 228 16-8 50 

194, 28 2015 235 23-8 95 

193, 29 2015 244 1-9 40 

194, 28 2015 251 8-9 70 

193, 29 2015 260 17-9 70 

194, 28 2015 267 24-9 5 

193, 29 2015 276 3-10 90 

194, 28 2015 283 10-10 70 

193, 29 2015 292 19-10 10 

194, 28 2015 299 26-10 90 

193, 29 2015 308 4-11 80 

194, 28 2015 315 11-11 10 

193, 29 2015 324 20-11 90 

194, 28 2015 331 27-11 0 

193, 29 2015 340 6-12 100 

194, 28 2015 347 13-12 100 

193, 29 2015 356 22-12 100 

194, 28 2015 363 29-12 90 

 

Tab. 20 – List of Landsat8 scenes used in this study, with the estimation of the cloud cover over the area of interest 
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Appendix 8 – Confusion matrices of the 4 Random Forest models tested 

 

Random Forest performed with EVI phenological metrics 

Confusion matrix 
 

 
Winter 

cereals 

Non-

cult. 

land 

Woods 
Mixed 

herb. 

Silo 

maize 
Alfalfa 

Mixed 

mead. 
Past. Rice 

Soy 

bean 
Tomato 

Other 

crops 
Tot CE 

Winter 
cereals 

213 0 0 0 0 0 0 0 0 0 0 491 704 0.70 

Non-cult. 

land 
0 218 0 0 0 0 0 0 0 0 0 535 753 0.71 

Woods 0 0 0 0 0 0 0 0 0 0 0 53 53 1.00 

Mixed 

herb. 
0 0 0 0 0 0 0 0 0 0 0 71 71 1.00 

Silo 

maize 
0 0 0 0 531 0 0 0 0 0 0 1474 2005 0.74 

Alfalfa 0 0 0 0 0 0 0 0 0 0 0 35 35 1.00 

Mixed 

mead. 
0 0 0 0 0 0 82 0 0 0 0 359 441 0.81 

Past. 0 0 0 0 0 0 0 136 0 0 0 20 156 0.13 

Rice 0 0 0 0 0 0 0 0 87 0 0 123 210 0.59 

Soybean 0 25 0 0 0 0 0 0 0 31 0 220 276 0.89 

Tomato 0 0 0 0 0 0 0 0 0 0 134 0 134 0.00 

Other 
crops 

56 70 0 0 209 0 29 31 40 9 22 181990 
18245

6 
0.00 

Tot 269 313 0 0 740 0 111 167 127 40 156 185371 
18729

4 
 

OE 0.21 0.30 1.00 1.00 0.28 1.00 0.26 0.19 0.31 0.23 0.14 0.02   

OA 0.979 

Tab. 21 – Confusion matrix of the classification performed with the EVI PMs-based RF 

 

 

Random Forest performed with NDVI phenological metrics 

Confusion matrix 
 

 
Winter 
cereals 

Non-

cult. 

land 

Woods 
Mixed 
herb. 

Silo 
maize 

Mixed 
mead. 

Past. Rice 
Soy 
bean 

Tomato 
Other 
crops 

Tot CE 

Winter 

cereals 213 0 0 0 0 0 0 0 0 0 282 495 0.57 

Non-cult. 

Land 0 391 0 0 0 0 0 0 0 0 709 1100 0.64 

Woods 
0 0 20 0 0 0 0 0 0 0 40 60 0.67 

Mixed 

herb. 0 0 0 0 0 0 0 0 0 0 71 71 1.00 

Silo maize 
0 0 0 0 513 0 0 0 0 0 1811 2324 0.78 

Mixed 

mead. 0 0 0 0 0 53 0 0 0 0 431 484 0.89 

Past. 
0 0 0 0 0 0 42 0 0 0 37 79 0.47 

Rice 
0 0 0 0 0 0 0 87 0 0 138 225 0.61 

Soybean 
0 25 0 0 0 0 0 0 44 0 228 297 0.85 

Tomato 
0 0 0 0 0 0 0 0 0 184 0 184 0.00 

Other 

crops 56 198 0 0 239 16 20 40 12 51 214561 215193 0.00 

Tot 
269 614 20 0 752 69 62 127 56 235 218308 220512  

OE 
0.21 0.36 0.00 1.00 0.32 0.23 0.32 0.31 0.21 0.22 0.02   

OA 0.980 

Tab. 22 – Confusion matrix of the classification performed with the NDVI PMs-based RF 
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Random Forest performed with SAVI phenological metrics 

Confusion matrix 
 

 
Winter 

cereals 
Maize 

Non-
cult. 

land 

Woods 
Mixed 

herb. 

Silo 

maize 

Mixed 

mead. 
Past. Rice 

Soy 

bean 

Other 

crops 
Tot CE 

Winter 
cereals 

88 27 0 0 0 0 0 0 0 0 346 461 0.81 

Maize 0 1578 0 0 0 0 0 0 0 0 2135 3713 0.58 

Non-cult. 

Land 
0 0 299 0 0 0 0 0 0 0 533 832 0.64 

Woods 0 0 0 0 0 0 0 0 0 0 40 40 1.00 

Mixed 
herb. 

0 0 0 0 0 0 0 0 0 0 71 71 1.00 

Silo maize 0 16 0 0 0 479 0 0 0 0 1715 2210 0.78 

Mixed 

mead. 
0 46 0 0 0 0 57 0 0 0 441 544 0.90 

Past. 0 0 0 0 0 0 0 148 0 0 37 185 0.20 

Rice 0 0 0 0 0 0 0 0 87 0 98 185 0.53 

Soybean 0 0 25 0 0 0 0 0 0 31 202 258 0.88 

Other 

crops 
27 678 113 0 0 175 7 31 40 9 192508 193588 0.01 

Tot 115 2345 437 0 0 654 64 179 127 40 198126 202087  

OE 0.23 0.33 0.32 1.00 1.00 0.27 0.11 0.17 0.31 0.23 0.03   

OA 0.97 

Tab. 23 – Confusion matrix of the classification performed with the SAVI PMs-based RF 

 

 

Random Forest performed with EVI, NDVI and SAVI phenological metrics 

Confusion matrix 
 

 
Winter 

cereals 
Maize 

Non-
cult. 

land 

Mixed 

herb. 

Silo 

maize 

Mixed 

mead. 
Past. Rice 

Soy 

bean 

Other 

crops 
Tot CE 

Winter 
cereals 

513 38 0 0 0 0 0 0 0 0 551 0.07 

Maize 26 2979 0 0 55 4 0 0 0 0 3064 0.03 

Non-cult. 

Land 
0 27 799 0 12 0 0 0 0 0 838 0.05 

Mixed 

herb. 
0 0 0 46 25 0 0 0 0 0 71 0.35 

Silo maize 0 38 0 0 1732 0 0 0 27 0 1797 0.04 

Mixed 

mead. 
39 89 0 0 28 90 0 14 0 0 260 0.65 

Past. 0 0 0 0 0 0 82 0 0 0 82 0.00 

Rice 0 0 0 0 0 0 0 173 0 0 173 0.00 

Soybean 0 0 25 0 33 0 0 0 151 0 209 0.28 

Other 

crops 
0 0 0 0 0 0 0 0 0 51 51 0.00 

Tot 578 3171 824 46 1885 94 82 187 178 51 7096  

OE 0.11 0.06 0.03 0.00 0.08 0.04 0.00 0.07 0.15 0.00   

OA 0.93 

Tab. 24 – Confusion matrix of the classification performed with the EVI-NDVI-SAVI PMs-based RF 
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Definitions 

Agro-ecology: «the science of the relationships of organisms in an environment purposely transformed by 

man for crop or livestock production» (Martin & Sauerborn, 2013). 

 

Agro-ecological zones: «zones which have similar combinations of climate and soil characteristics, and 

similar physical potentials for agricultural production» (FAO, 1996). 

 

Agro-ecological zoning: the «division of an area of land into smaller units, which have similar characteristics 

related to land suitability, potential production and environmental impact» (FAO, 1996). 

 

Classification: «a process in which each pixel of an image is assigned to a category, among a set of 

categories of interest» (Khorram et al., 2012). 

 

Land cover: «the description of the land surface in terms of soils and vegetation layers, including natural 

vegetation, crops and human structures» (Burley, 1961); «the observed (bio)physical cover on the earth’s 

surface» (FAO, 2000). 

 

Land use: «it refers to the purpose for which humans exploit the land cover, including land management 

techniques» (Lambin, Geist, & Rindfass, 2006). 

 

Land use systems: «they can be defined as a coupled human-environment system; they describe how land, 

as an essential resource, is being used and managed» (Bégué et al., 2015). 

 

Radiometric resolution: «it is the sensitivity of the sensor, i.e. its capacity to discriminate small variations in 

the recorded spectral radiance» (Chuvieco & Huete, 2010). 

 

Remote sensing: «the acquisition of information about the state and condition of an object through 

sensors that are not in physical contact with it; the information is transmitted from the object to the 

sensors in the form of electromagnetic radiation» (Chuvieco & Huete, 2010). 

 

Resolution: «the sensor’s ability to discriminate information» (Estes & Simonett, 1975); «the ability of the 

sensor to distinguish a specific object from other objects» (Chuvieco & Huete, 2010). 

 

Segmentation: the process of partitioning an image into non-overlapping regions, which are called 

segments (Schiewe, 2002). 
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Spatial resolution: «it is a measure of the fineness of detail of an image» (Khorram et al., 2012). 

 

Spectral resolution: «it defines the sensor’s ability to detect wavelength differences between objects or 

areas of interest» (Khorram et al., 2012). 

 

Temporal resolution: «it is the observation frequency, or revisiting period, of the sensor» (Chuvieco & 

Huete, 2010). 

 

Vegetation Indices: «techniques to extract quantitative information on the amount of vegetation, or 

greenness, for every pixel in an image. They typically involve spectral transformations of two or more bands 

[…]» (Chuvieco & Huete, 2010). 
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